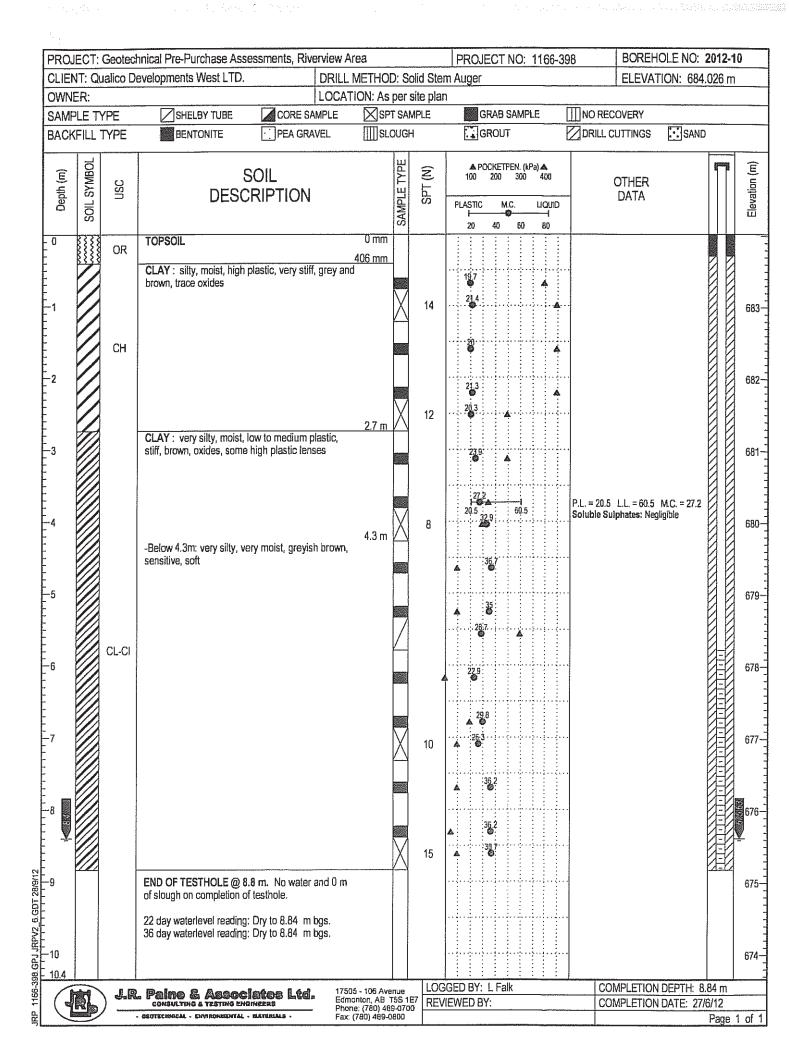
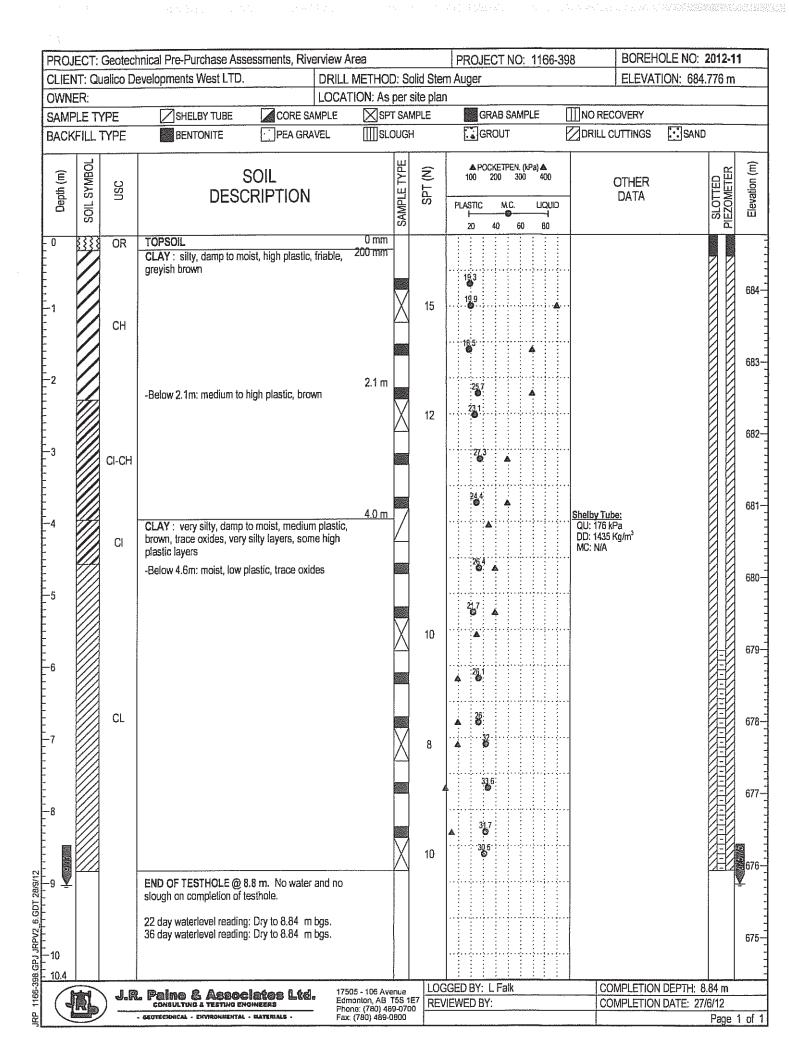

PROJ	ECT: I	Rivervie	w Neighborhood 1-3					PROJECT NO: 6004	l-32	BOREH	OLE NO: 201	3-44
CLIEN	IT: Sta	intec Co	onsulting Ltd		ORILL METHOD	D: Ho	ollow S	tem Auger/Coring		ELEVAT	TON: 658 m	
			p Group		OCATION: As							
SAMF			SHELBY TUBE	CORE SAMI				GRAB SAMPLE		RECOVERY		
BACK	FILL T	YPE	BENTONITE	PEA GRAVE	EL SLO	DUGH	I	GROUT	DRI	LL CUTTINGS	SAND	
Depth (m)	SOIL SYMBOL	MODIFIED USCS	DESC	SOIL RIPTION		SAMPLE TYPE	SPT (N)	PLASTIC M.C. LIQU 20 40 60 80	ID	OTHER DATA	SLOPE	INDICATOR Elevation (m)
411 427 143 444 45 46 47 48 49 50 51 52 53 55 66 57 58 59 60 57 58 59 60 60 60 60 60 60 60 60 60 60 60 60 60		CS	-Below 39.3m: bentonitic, relation of the second se	hard, slicken-side hard to hard hard 5" thick Bentonite s ocky moderately hard to moderately hard to ken-sides, modera 0.3m, moderately hard, slightly bloc 1.8 m. No water a sthole.	seam, hard hard tely hard ky,							617- 616- 615- 614- 613- 611- 610- 609- 608- 607- 606- 605- 604- 603- 602- 601- 600- 599-
IRP 6004-		Н	HOGGAN ENGINEERING & TES	TING (1980) LTD.	17505 - 106 Ave Edmonton, AB 7 Phone: (780) 48 Fax: (780) 489-0	Γ5S 1E 9-0700	7 RE	GGED BY: L Falk /IEWED BY: R Evans No: 44			I DEPTH: 44.81 I DATE: 12/3/13 Pa	

PRO	DJECT:	Geotecl	nnical Pre-Purchase Asses	sments, Riverv	iew Area			PROJECT NO: 1166-3	98	BOREHOLE NO:	2012-	1
CLI	ENT: Qı	ialico De	evelopments West LTD.	D	RILL METHO	D: Soli	d Ster	m Auger		ELEVATION: 679	.945 г	n
OW	NER:			L	OCATION: As	•						
SAN	/IPLE T	/PE	SHELBY TUBE	CORE SAMP			LE			RECOVERY		
BAC	KFILL '	TYPE	BENTONITE	PEA GRAVE	L ∭SLO	DUGH		GROUT	☑ DRI	ILL CUTTINGS 🖸 SAND)	
Depth (m)	SOIL SYMBOL	nsc		OIL RIPTION		SAMPLE TYPE	SPT (N)	▲ POCKETPEN. (kPa) ▲ 100 200 300 400 PLASTIC M.C. LICUID 1	_	OTHER DATA		Elevation (m)
1RP 1466-398. GPJ JRPVZ 6. GDT 2899/12		OR CI CH CI	TOPSOIL: clayey, black, recorded to clay: silty, some sand, restiff to very stiff, brown -Below 0.9m: trace white recorded to clay: silty, moist, high play clay: silty, moist, high play clay: very silty, moist, mediable, brown mottled grey, friable, brown, trace oxides CLAY: very silty, very moist friable, brown, trace oxides CLAY: very silty, very moist to very moist to very silty, very moist to very	sidue, slightly friance oxides wet, soft to firm, sometime plastic wet, soft to firm, sometime plantic wet, soft to fir	2.1 m ey 2.4 m f to 4.1 m tic, 4.9 m c, firm,		12 12 12	20 40 60 80 166 4 24 24 25 24 7 20 6 25 24 7 21 5 24 7 34 7 34 7 35 6 35 6	QU: 2 DD: 1 MC: I	y Tube: 232 kPa 1396 kg/m³ N/A cocket pen at 4.6m because le was to friable 21.5 L.L = 35.6 M.C. = 31.3 e Sulphates: Negligible		679- 678- 677- 674- 673-
g 10.4							T				<u> </u>	
166		J.R	. Paine & Associa	ntos Ltd.	17505 - 106 Ave Edmonlon, AB T			GED BY: L Falk		COMPLETION DEPTH: 8		
ر اي		/	CONSULTING & TESTING ENGIN		Phone: (780) 489 Fax: (780) 489-0	-0700	KEV	IEWED BY: R Evans		COMPLETION DATE: 19/		1 of 1
≒ــــــ`				-	, un. (100) 700°0						rage	i UI I

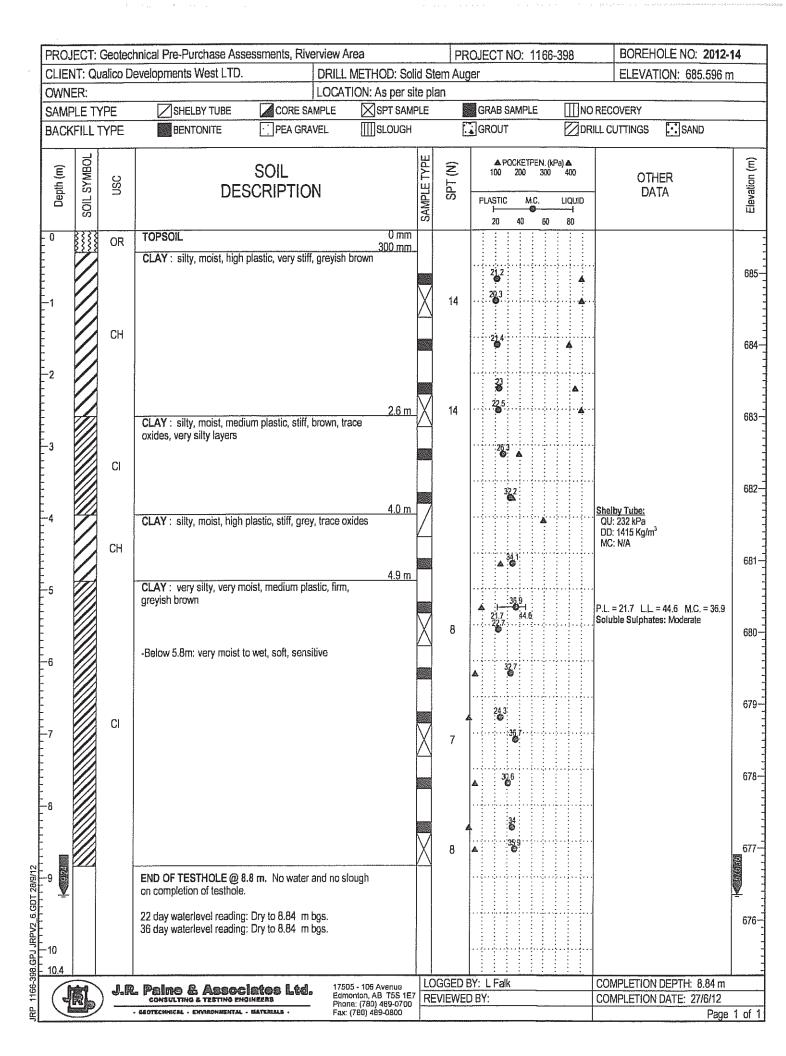
PROJ	ECT:	Geotec	hnical Pre-Purchase Ass	essments, Rivervie	w Area		PF	ROJECT N	NO: 11	66-398	BOREH	OLE NO: 2012-	5
-		ualico D	evelopments West LTD.	DF	RILL METHOD: Sol	id S	em Au	ger			ELEVA	ΓΙΟΝ: 683.605 n	n
OWN					CATION: As per si		an _	****					
SAMP			SHELBY TUBE	CORE SAMPL		PLE		GRAB S			RECOVERY		
BACK	FILL	TYPE 	BENTONITE	PEA GRAVEL	[[[]srough	·	Ŀ	GROUT		☑DR	ILL CUTTINGS	SAND	
Depth (m)	SOIL SYMBOL	OSC		SOIL SCRIPTION		SAMPLE TYPE	SPT (N)	PLASTIC 20	200 3 M.C.	. (kPa) ▲ 00 400 LIQUID 	OTI- DA	HER TA	Elevation (m)
- 0 1 2		OR CL-CI	TOPSOIL CLAY: very sandy, mois plastic, firm to stiff, brown CLAY: silty, moist, media brown, trace oxides	•	760 mm		13	22.5 23.5 23.5 20.8	2	75.2	P.L. = 20.8 LL. Soluble Sulphet	= 75.2 M.C. = 28.2 es: Negligible	68
- - - -3		CI-CH						29 0	7 		Shelby Tube: QU: 195 kPa DD: 1413 Kg/m MG: N/A	1	68
-4 5		Cl	CLAY: silty, sandy, mois firm to stiff, brown, trace o SILT: clayey, wet, low pla brown, trace coal and oxid	xides astic, soft, sensitive,	4.6 m	X	6	•	35 36 3. 37 5				67
-6						X	5		35,5 39,4 39,2				67
-7		CL-ML	-Below 7.3m: grey		7.3 m	X	7	3	36 6 37 1				67 ¹
-8 -9		,	END OF TESTHOLE @ 8.	8 m. No water and 0	0.61 m of	X	6	3	51 6				675
10	TAN-		slough on completion of te 30 day waterlevel reading: 44 day waterlevel reading:	6.04 m bgs.	į								674
(h	N N	, J.R	Paine & Associ	etos Ltd.	17505 - 106 Avenue			3Y: L Falk				DEPTH: 8.84 m	
(4	Rb)	/	CONSULTING & TESTING ENG.		Edmonton, AB T5S 1E7 Phone: (780) 489-0700 East: (780) 480-0803	RE	VIEWE	BY: RE	vans		COMPLETION	DATE: 19/6/12	4 -
_				Fax: (780) 489-0800	1				I		Page	1 of	


PROJECT: Geotechnical Pre-Purchase Assessments, Riverview	Area	PR	OJECT NO: 1166-	398	BOREHOLE NO: 2012-6	6
CLIENT: Qualico Developments West LTD. DRIL	L METHOD: Solid S	Stem Aug	ger		ELEVATION: 682.9 m	
OWNER: LOCA	ATION: As per site p	olan				
SAMPLE TYPE SHELBY TUBE CORE SAMPLE	SPT SAMPLE		GRAB SAMPLE	∭NO RE	ECOVERY	
BACKFILL TYPE BENTONITE PEA GRAVEL	SLOUGH	[GROUT	DRILL	CUTTINGS SAND	*****
SOIL SOIL DESCRIPTION	SAMPLE TYPE	SPT (N)	PLASTIC M.C. 20 40 50	a) & 400 LIQUID 10	OTHER DATA	Elevation (m)
TOPSOIL CI CLAY: silty, moist, medium plastic, very stiff, brown, -Below 0.8m: medium to high plastic, trace rootle CLAY: silty, moist, medium plastic, stiff, brown, oxides CLAY: silty, moist, medium plastic, stiff, brown, oxides -Below 4.7m: very moist to wet, soft SILT: wet, low plastic, soft, sensitive, grey CLAY LAMINATION: medium plastic, firm, grey END OF TESTHOLE @ 8.8 m. No water and 0.6 slough on completion of testhole. 30 day waterlevel reading: 5.78 m bgs. 44 day waterlevel reading: 4.95 m bgs.	2.7 m trace 4.7 m 5.5 m	9 9	237 247 249 59 7 24 52 49 59 7 25 52 49 59 7 26 52 49 59 7 27 52 49 59 7 28 52 49 7 2	P. S.		682- 681- 679- 678- 676- 674-
J.R. Paine & Associates Ltd. 17 consulting a Testing Engineers	000 10011100	~~~	BY: L Falk D BY: R Evans		COMPLETION DEPTH: 8.84 m COMPLETION DATE: 19/6/12	
- SEGTECHNICAL - ENVIRONMENTAL - MAYERIALS - Fa	ex: (780) 489-0800	**************************************				1 of 1

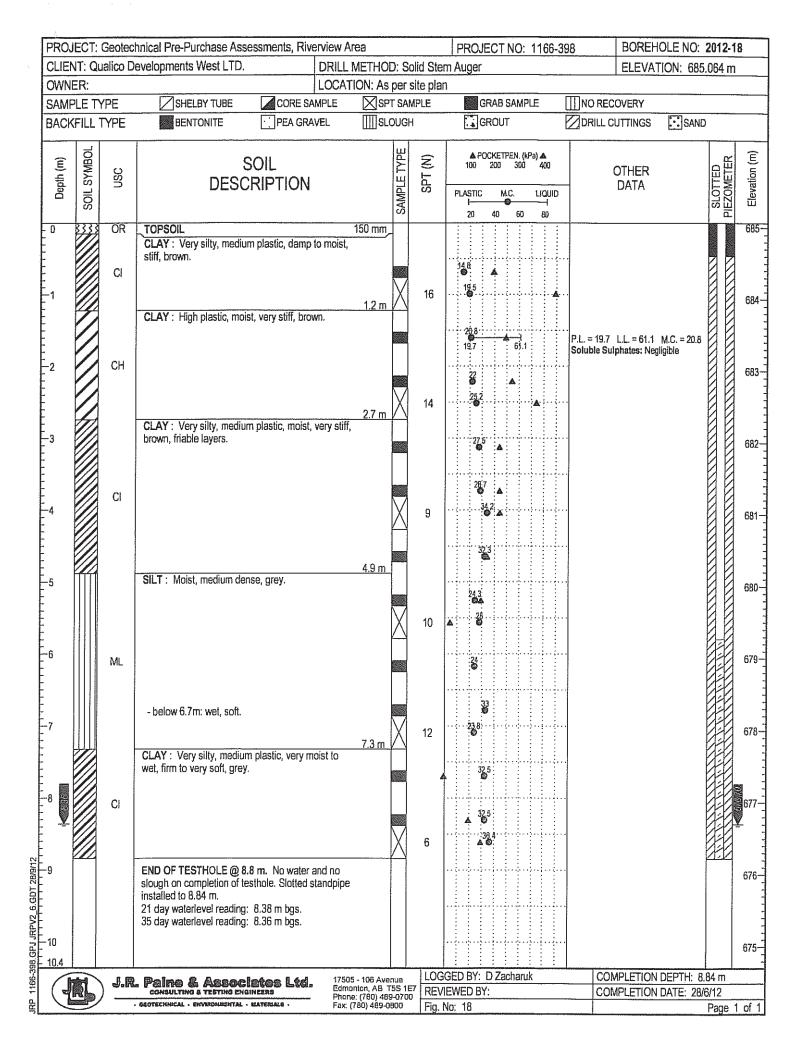

PROJECT: Geotec	hnical Pre-Purchase Assessment	s, Riverview Ar	ea		PR	OJECT NO: 11	66-398	BOREH	OLE NO: 2012-7	7
	evelopments West LTD.		METHOD: Sol			jer		ELEVAT	ΊΟΝ: 683.467 π	n
OWNER:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ION: As per si		an _		-			
SAMPLE TYPE		ORE SAMPLE	SPT SAM	PLE		GRAB SAMPLE		RECOVERY		
BACKFILL TYPE	BENTONITE PE	EA GRAVEL	SLOUGH		Ŀ	GROUT	DR	ILL CUTTINGS	SAND	
Solt SYMBOL	SOIL DESCRIF			SAMPLE TYPE	SPT (N)	PLASTIC M.C.	V. (kPa) ▲ 300 400 □□QUID 1 60 60	OTH DA		Elevation (m)
-0 3333 OR	TOPSOIL		0 mm	Ħ						
OR CI	CLAY: silty, sandy, moist to very firm to stiff, brown, trace oxides CLAY: silty, moist, medium to hig grey modelled brown, trace oxides -Below 3.1m: stiff SILT: clayey, wet, low plastic, soft brown-grey	h plastic, very sti	250 mm lastic,		11 7 6	29 2 4 29 4 19:27 9 28 3 32 4 35 4	60	Shelby Tube: QU: 125 kPa DD: 1560 Kg/m³ MC: 35.4 %		683- 682- 681- 679- 678- 676-
	END OF TESTHOLE @ 8.8 m. No on completion of testhole. 30 day waterlevel reading: 5.49 m living 44 day waterlevel reading: 3.94 m living 3.94 m living 4.4 day waterlevel reading: 3.94 m living 3.94 m living 4.4 day water	bgs.	ugh		8	32.7				675
	. Paine & Associates	Ltd. 17505	i - 106 Avenue			Y: L Falk			DEPTH: 8.84 m	
	Consulting & testing ensineers - Sectechnical - Environmental - Materials	Риоле	nton, AB T5S 1E7 1: (780) 489-0700 780) 489-0800	RE\	VIEWED	BY: R Evans		COMPLETION		4
		- Fax: (/	LOU) 408-0900	1			I		Page	1 of 1

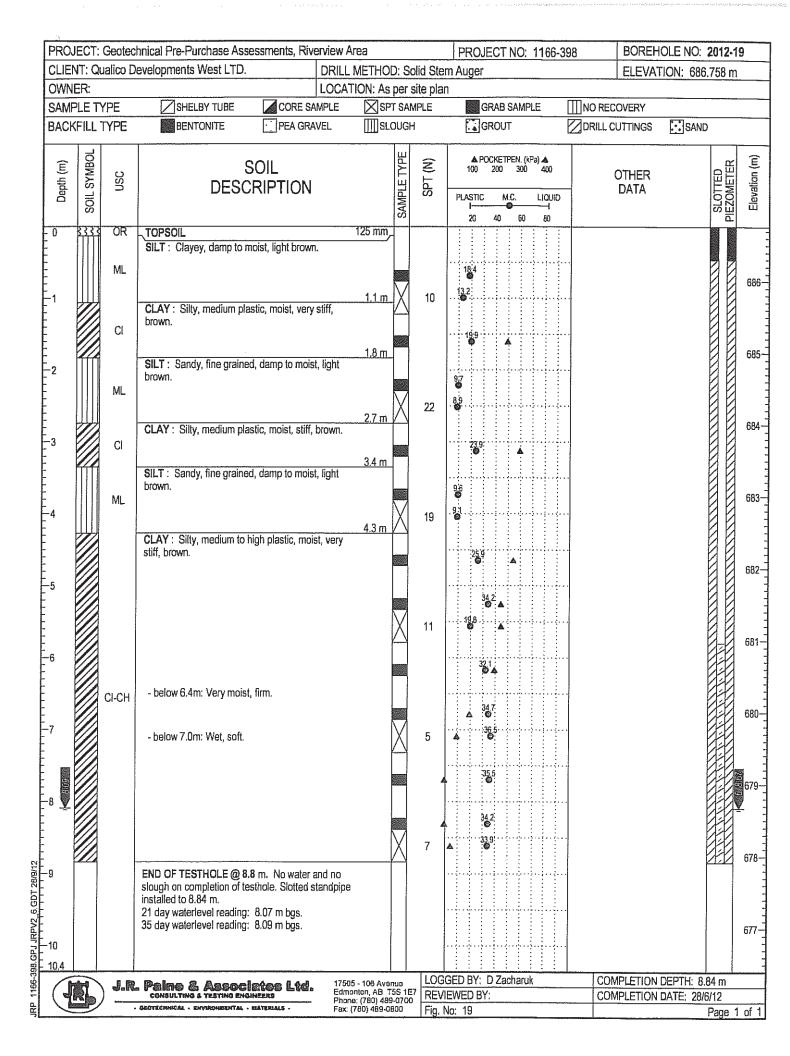
JRP 1166-398.GPJ JRPV2 6.GDT 28/9/12

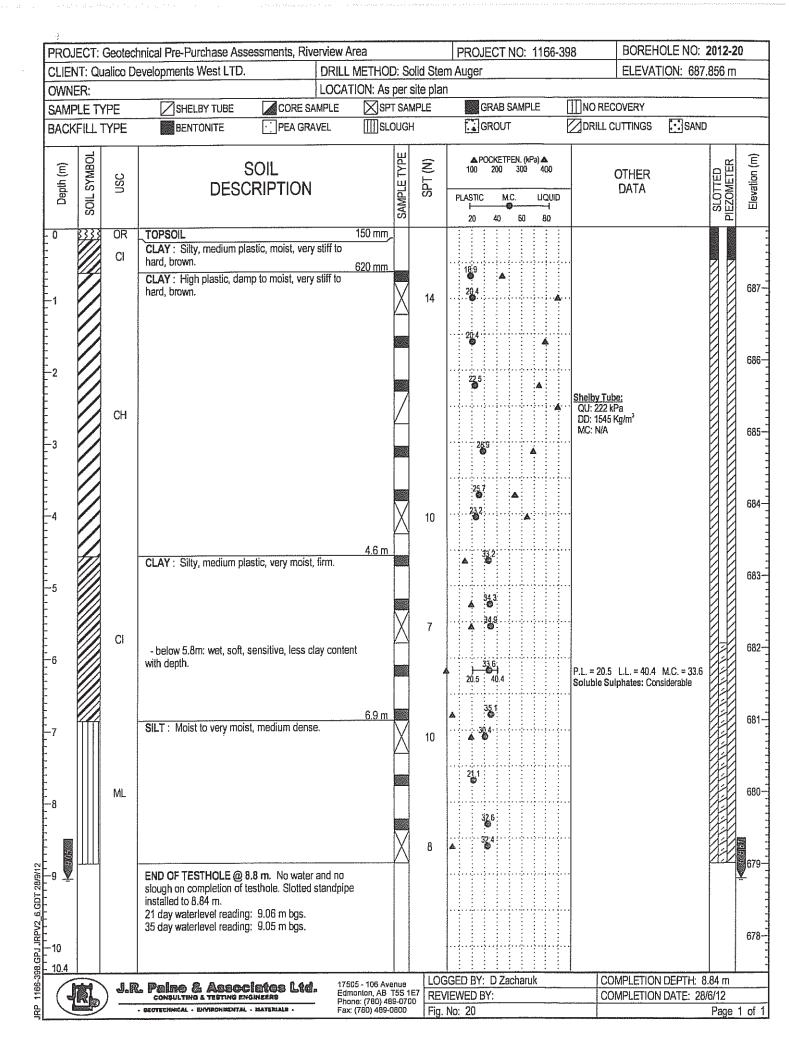
PRO.	JECT:	Geotech	inical Pre-Purchase Asses	ssments, Riverview	Area		PR	OJECT NO: 1166	-398	BOREHOLE NO: 2012-	8
CLIE	NT: Qu	alico De	evelopments West LTD.	DRIL	L METHOD: Soli	d St	em Aug	er		ELEVATION: 684.575 m	n
OWN	ER:			······································	ATION: As per sit	-	an				
SAME	LE TY	PE	SHELBY TUBE	CORE SAMPLE	SPT SAMF	LE		GRAB SAMPLE		RECOVERY	
BACK	KFILL 1	YPE	BENTONITE	PEA GRAVEL	SLOUGH			GROUT	DRI	LL CUTTINGS SAND	
Depth (m)	SOIL SYMBOL	nsc		SOIL CRIPTION		SAMPLE TYPE	SPT (N)	△ POCKETPEN, (III 100 200 300 PLASTIC M.C.	(Pa) ▲ 400 LIQUID 80	OTHER DATA	Elevation (m)
JRP 1166-398 GPJ JRPVZ 6 GDT 289/12 10 0 0 4		CI-CH	TOPSOIL CLAY: silty, sandy, moist firm to stiff, brown CLAY: silty, moist, medium light brown -Below 3.7m: medium plast -Below 4.0m: medium to high -Below 4.9m: very moist, m SILT: clayey, wet, low plast on completion of testhole. 30 day waterlevel reading: 44 day waterlevel reading:	ic, stiff, trace oxides gh plastic edium plastic, firm stic, soft, sensitive, gre m. No water and no 3.94 m bgs. 3.45 m bgs.	760 mm stiff, 3.7 m 4.0 m		10 15	20 40 60 242: 254 255 305 358 358 21.1 40.5 3364 3378 3388		P.L. = 21.1 L.L. = 40.6 M.C. = 35.8 Soluble Sulphates: Negligible	684- 683- 682- 681- 677- 676-
		J.R	. Раїмо & Associ	ederanda perena ≥	'505 - 106 Avenue Imonton, AB T5S 1E7			BY: Linaik DBY: RiEvans		COMPLETION DEPTH: 8.84 m COMPLETION DATE: 19/6/12	
ᇍ			ENGITECHNICAL - ENVIRONMENTAL -	Ph BATERIALS + Fa	поле: (780) 489-0700 эх: (780) 489-0800		_ v (_ T V _	J ∪ J . 1\ L7⊞13			1 of 1

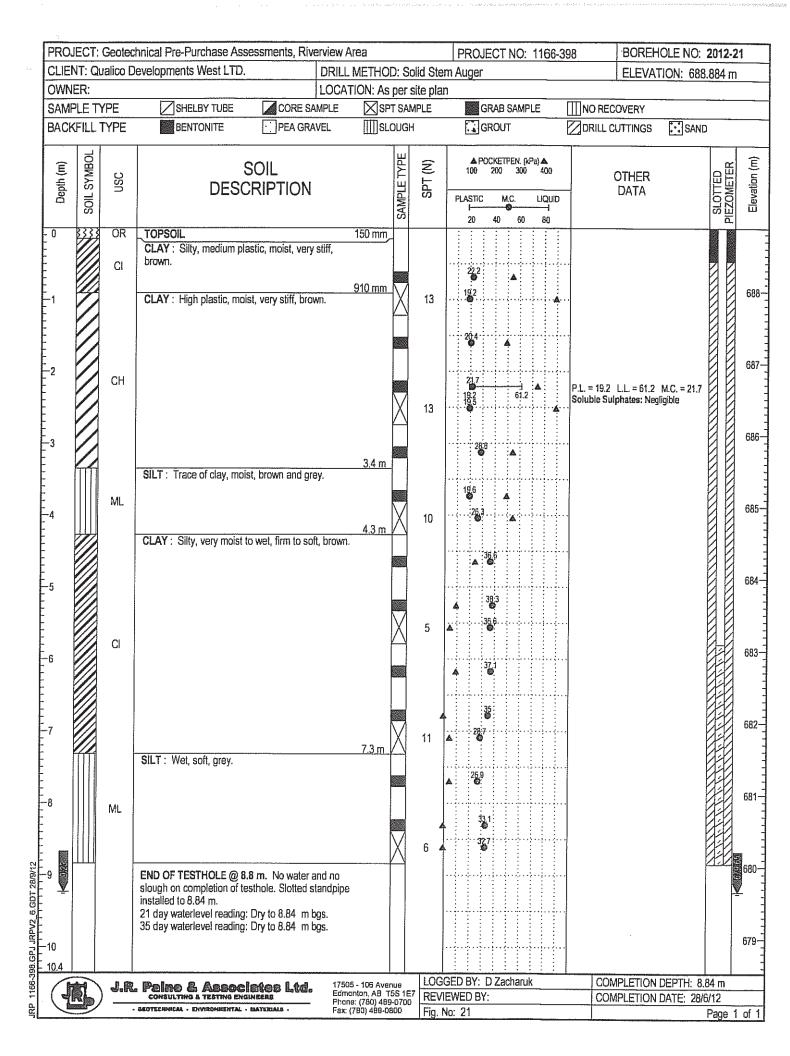

District Countries Developments West LTD. DRILL METHOD: Sold Stern Auger Developments West LTD. DRILL WEST No. As per skill plan	PROJECT:	Geotec	chnical Pre-Purchase Asse	essments, Rivervie	ew Area		PROJECT NO: 1166-	398	BOREHOL	E NO: 2012	-9
SAMPLE TYPE SHELBY TUBE CORE SAMPLE SPT SAMPLE GRAS SAMPLE STRAMPLE GRAS SAMPLE GRAS SAMPL		ualico D	evelopments West LTD.	DF	RILL METHOD: 8	Solid Ste	em Auger		ELEVATIO	N: 682.363	m
SOLL DESCRIPTION SOLL DESCRIPTION SOLL DESCRIPTION SOLL DESCRIPTION APOSITE LOUTINGS SAND CHAP: Billy, moist, medium to high plastic, stiff to twey stiff, greyish brown CLAY: wery stiff, greyish brown CLAY: wery stiff, greyish brown CLAY: wery moist, medium plastic, stiff to twey stiff, greyish brown stiff, brown, some high plastic lenses Below 3.2m: very moist, slightly sensitive CLAY: wery sity, very moist, high plastic, stiff, brown and grey, oxides CLAY: wery sity, very moist to wet, medium plastic, soff, grey, sensitive, some high plastic lineses CLAY: wery sity, very moist to wet, medium plastic, soff, grey, sensitive, some high plastic lineses CLAY: wery sity, very moist to wet, medium plastic, soff, grey, sensitive, some high plastic lineses CLAY: were sity, very moist to wet, medium plastic, soff, grey, sensitive, some high plastic lineses					· · · · · · · · · · · · · · · · · · ·		***				
SOIL DESCRIPTION SOIL DESCRIPTION CLAY: silly, very moist, slightly sensitive Below 2.7mt coidles Below 2.7mt coidles Below 3.2mt very moist, slightly sensitive CLAY: silly, very moist, light plastic, silff, brown and grey, coides CLAY: silly, very moist, slightly sensitive CLAY: silly, very moist to wat, modum plastic, solf, grey, sensitive, some high plastic lonses CLAY: selly, very moist to wat, modum plastic, solf, grey, sensitive, some high plastic lonses											
OH TOPSOIL Own A57 mm CLCH Silly, moist, medium to high plastic, stiff to very stiff, greyish brown CLCH Silly, moist, medium to high plastic, stiff to very stiff, greyish brown CLAY: silly, damp to moist, medium plastic, stiff to stiff, brown, some high plastic lenses Below 2.7m: oxides -Below 3.2m: very moist CI CLAY: silly, very moist, high plastic, sliff, brown and grey, oxides -CLAY: slilly, very moist to wet, medium plastic, sliff, brown and grey, oxides CLAY: very slilly, very moist to wet, medium plastic, scrift, grey, sensitive, some high plastic enses CI END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.	BACKFILL	TYPE	BENTONITE	PEA GRAVEL		H	GROUT	DRILL CU	TTINGS [SAND	
CLAY: silty, damp to moist, medium plastic, stiff to stiff, preysh brown CLAY: silty, moist, medium plastic, stiff to stiff, preysh brown, some high plastic lenses CLAY: silty, moist, medium plastic, stiff to stiff, brown, some high plastic lenses CLAY: silty, moist, slightly sensitive Soluble Sulphates: Negligible 8 A CLAY: silty, moist, slightly sensitive Soluble Sulphates: Negligible 8 A CLAY: silty, wery moist, slightly sensitive CLAY: silty, very moist, slightly sensitive CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses	Depth (m) SOIL SYMBOL	OSC			SAMPLE TYPE	SPT (N)	100 200 300 400 PLASTIC M.C. LIQUIC	-		THE STATE OF THE S	
CLAY: silty, wery moist, slightly sensitive CHAY: silty, very moist, slightly sensitive CLAY: silty, very moist, slightly sensitive 7.3 m 9 CLAY: very silty, very moist to wet, medium plastic lenses CI CLAY: silty, very moist to wet, medium plastic lenses CI END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.	0	ОН	TOPSOIL								
stiff, brown, some high plastic lenses -Below 2.7m: oxides -Below 3.2m: very moist -Below 5.3m: very moist, slightly sensitive -Below 5.3m: very moist, slightly sensitive -CLAY: sity, very moist, high plastic, stiff, brown and grey, oxides -CLAY: very sity, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic enses	1	CI-CH	very stiff, greyish brown		iff to	9	1:57::::5::::::::::::::::::::::::::::::				
-Below 3.2m: very moist -Below 5.3m: very moist, slightly sensitive			CLAY: very silty, damp to stiff, brown, some high plan	moist, medium plas stic lenses	stic,	8	24.1: A	P.L. = 18.4 L Soluble Sulpl	.L. = 56.4 M.C hates: Negligibl	2. = 23.3 le	
-Below 5.3m: very moist, slightly sensitive CLAY: slity, very moist, high plastic, stiff, brown and grey, oxides CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.		Cl	The state of the s								
CLAY: silty, very moist, high plastic, stiff, brown and grey, oxides 7.3 m CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses CI END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.						8	44. 26 A				
CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses CI END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.			CLAY: silty, very moist, hi		5.8 m	8	35,7 	· · ·			
CLAY: very silty, very moist to wet, medium plastic, soft, grey, sensitive, some high plastic lenses CI END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.		СН			7.3 m	9	32	•			
END OF TESTHOLE @ 8.8 m. No water and no slough on completion of testhole.		Cl	plastic, soft, grey, sensitive								
1 ZZ day wateriever reading: Dry to 6,64 M DdS.	▼		slough on completion of tes	thole.	100	10	32.9				
36 day waterlevel reading: Dry to 8.84 m bgs.			36 day waterlevel reading: [Ory to 8.84 m bgs.	The state of the s	1.00					
J.R. Paine & Associates Ltd. 17505 - 105 Avenue Edmonton, AB TSS 1E7 Phone: (780) 489-0700 REVIEWED BY: L Falk COMPLETION DEPTH: 8.8	JIL	J.R	Paine & Associa	were been	Edmonton, AB T5S 1	27 DEV					

		-	nnical Pre-Purchase Asses	ssments, Riverview A	rea		PRO	DJECT NO: 1160	6-398	BOREH	OLE NO: 2012-	12
1		ialico De	evelopments West LTD.		METHOD: Solid		Aug	er		ELEVAT	TION: 683.099 n	<u>n</u>
OWNE		/DE	SHELBY TUBE	CORE SAMPLE	TION: As per site			GRAB SAMPLE	Пыо	RECOVERY		
BACK			BENTONITE	PEA GRAVEL	SLOUGH			GROUT		ILL CUTTINGS	SAND	
D/101	T 1				· · · · · · · · · · · · · · · · · · ·	-				T		T
Depth (m)	SOIL SYMBOL	OSC		SOIL CRIPTION		SAMPLE TYPE	SFI (N)	PLASTIC M.C.	kPa) ▲) 400 LIQU(D	OTH DA		Elevation (m)
<u></u>	100		TOPSOIL		0 mm	<i>जे</i>	_	20 40 60	80			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OR CH	CLAY: silly, high plastic, v	ery stiff, greyish brown	300 mm		20	22.7 20.1 20.1 20.5 21.5	Á			682
3		CI-CH	CLAY: silty, moist, mediur stiff, brown, oxides, some v	ery silty layers	2.7 m very 3.8 m		8	19.7 59.8 33.9 37.8	A	P.L. = 19.7 LL. Soluble Sulphate	= 59.8 M.C. = 26.7 es: Negligible	680
5		CL	-Below 5.3m: medium plast layers	ic, greyish brown, some	e clayey		12	21 9 A 21 9 A 21 9 A 20 1				678
7		Cl	-Below 7.6m; very moist to	wet, sensitive			8	23.5 23.5 23.1 23.1 23.1 23.1 23.1 23.1 23.1 23.1				676
9 - 10.4		***************************************	END OF TESTHOLE @ 8.8 on completion of testhole. 22 day waterlevel reading: I 36 day waterlevel reading: I	Ory to 8.84 m bgs.	lough		10	▲ 345 ▲ 346				673-
10.4	\sqsubseteq					I OGG	ED B	Y: L Falk	: ; ;	COMPLETION	DEPTH: 8.84 m	ļ
	乱) J.R	Poine & Association consultano a restino en cui	and the second in the second i	05 - 106 Avenue nonton, AB T5S 1E7 ne: (780) 489-0700	REVIE					DATE: 27/6/12	
		,	GEGTECHNICAL - ENFARONMENTAL - I	ATEMALE · Fax:	ne: (780) 489-0700 : (780) 489-0800							1 of

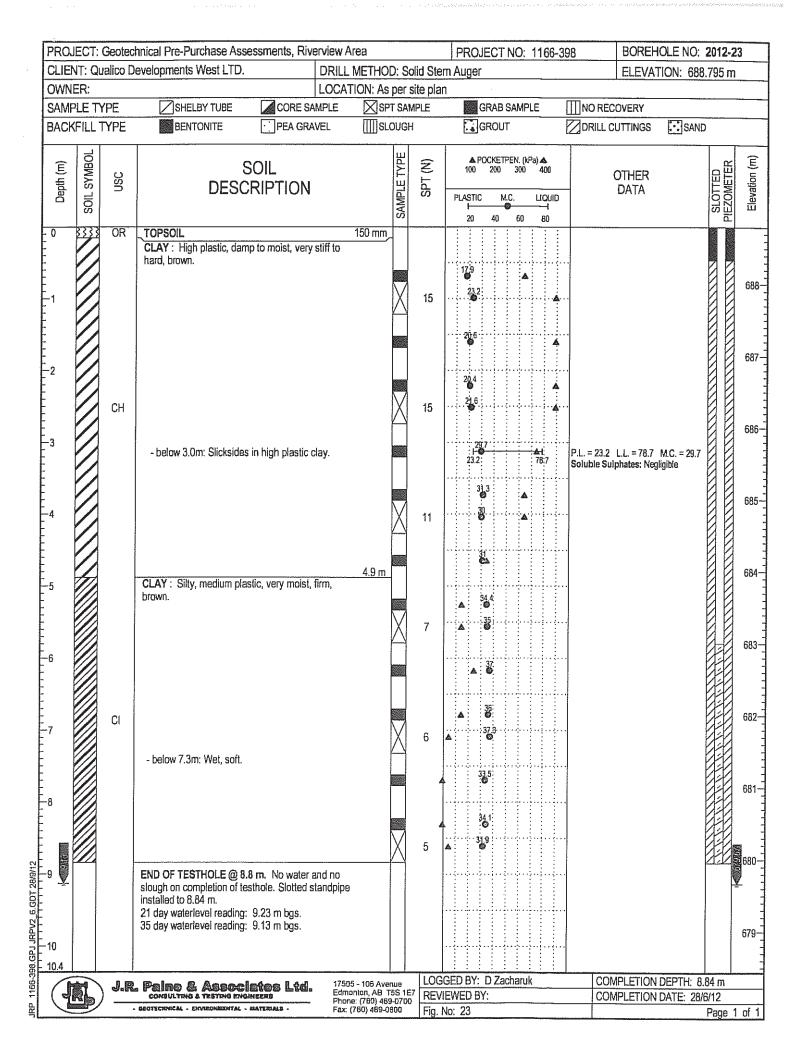

PROJECT: (Geotech	nnical Pre-Purchase Asses	sments, Riverview Ar	rea		PR	OJECT NO: 1166	5-398	BOREHOLE NO: 2012	2-13
CLIENT: Qu	alico De	evelopments West LTD.		METHOD: Sol			jer		ELEVATION: 684.039	m
OWNER:				ION: As per si		an			100000	
SAMPLE TY	PE_	SHELBY TUBE	CORE SAMPLE	SPT SAM	LE		GRAB SAMPLE		RECOVERY	
BACKFILL T	YPE	BENTONITE	PEA GRAVEL	srongh	·		GROUT	DRIL	L CUTTINGS SAND	
Depth (m) SOIL SYMBOL	USC		SOIL CRIPTION		SAMPLE TYPE	SPT (N)	▲ POCKETPEN. (160 200 360 PLASTIC M.C. 1 20 40 60	LIQUID	OTHER DATA	Elevation (m)
-1	OR CI	TOPSOIL CLAY: silty, damp to mois greyish brown	t, medium plastic, very s	0 mm 300 mm sitff,	X	11	193	Á		68
2	CH	CLAY: silty, high plastic, v CLAY: very silty, moist, m brown, oxides, very silty lay	edium plastic, firm to stil	2.4 m	X	11	248 296	A		6
3							24.5 28.8 28.8			6
						9	295 347			•
	CI	-Below 4.9m: greyish browr	1		X	13	20.5			
							20 A 9 -35.9			{
					X	8	26.1 26.1			-
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		X	8	∆ 35.2			
0		end of Testhole @ 8.8 on completion of testhole. 22 day waterlevel reading: labeled the same statement of the	Ory to 8.84 m bgs.	ough						<u>*</u>
10.4						CCEDI	: : : : : : BY: L Falk	: : :	COMBLETION DEDTIL 9.94	
(Jiti)	\ J.R	L Paino & Associa	arka prepare Equi	15 - 106 Avenue ontan, AB T5S 1E7		VIEWE			COMPLETION DEPTH: 8.84 r COMPLETION DATE: 27/6/12	
	/ —	- CECTECHAICAL - ENVIRONMENTAL - I	PAGE	ne: (780) 489-0700 (780) 489-0800	1 1					ge 1

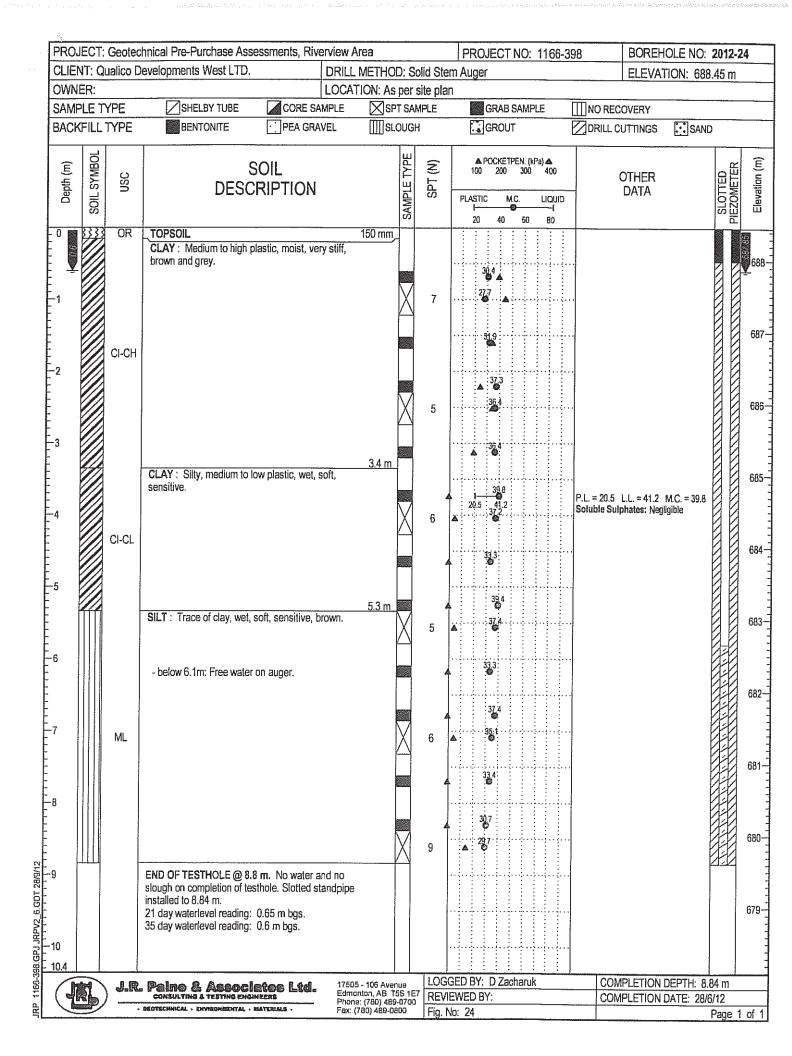


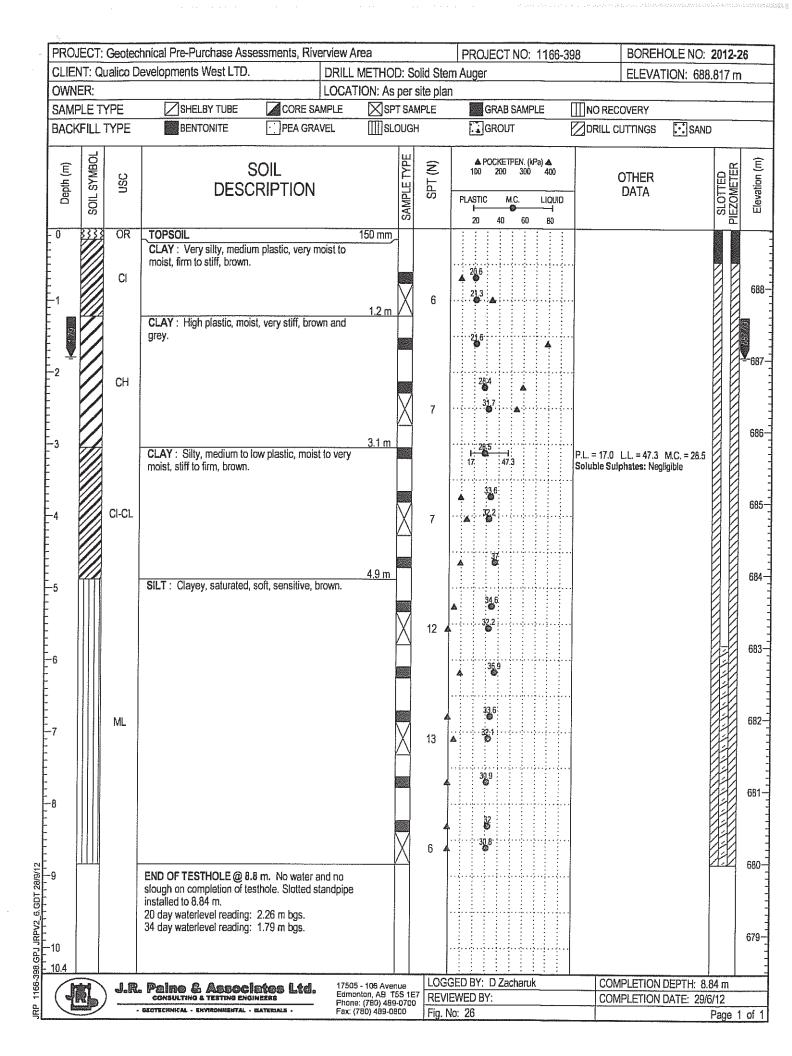

	PROJE	ECT:	Geotec	hnical Pre-Purchase Asse	ssments, Riverview /	Area		PR	OJECT NO: 1166	3-398	BOREHOLE NO: 2012	-15
λ,	CLIEN	IT: Qı	ıalico D	evelopments West LTD.	DRILL	METHOD: Soli	d Ste	m Aug	er		ELEVATION: 685.891	m
	OWNE					TION: As per si		1				
	SAMP			SHELBY TUBE	CORE SAMPLE	SPT SAME	圧		GRAB SAMPLE		RECOVERY	
	BACKI	FILL	ΓΥΡΕ	BENTONITE	PEA GRAVEL	- sroneh			GROUT	DRIL	L CUTTINGS SAND	1
	Depth (m)	SOIL SYMBOL	OSC		SOIL CRIPTION		SAMPLE TYPE	SPT (N)	PLASTIC M.C. 20 40 60	400 LIQUID B0	OTHER DATA	Elevation (m)
	- O		OR	TOPSOIL CLAY: silty, moist, high pl precipitates	astic, very stiff, brown,	0 mm trace 200 mm					w (w/m) (/ m) (/	
	-1 1 		СН	-Below 1.4m: very silty laye		1.4 m 2.1 m		12	226 198 198 222	A		685~ 684~
	- - - - - - 3			-Below 2.1m: brown and gr	ey	3.4 m	X	11	23 23 25 225			683-
and the state of t	-4			CLAY: very silty, moist, m and grey, some high plastic CLAY: silty, moist, mediur trace oxides	layers interbedded	f, brown 4.3 m	X	11	23.7 . 27.9 . 33	A		682
	_5 5		CI	-Below 4.9m: very moist, fir	m		V	6	36.2 A 35.3			681
	-6 -			-Below 6.1m: very silty, moi plastic, grey, sensitive	st to wet, low to mediu	m :			317			680
	-7		CL-CI				X	8 4	27.5			679
	-8						X	7	\$5.2 \$6			678-
JRP 1166-398.GPJ JRPVZ 6.GDT 28/9/12	99			END OF TESTHOLE @ 8.8 on completion of testhole. 22 day waterlevel reading: I 36 day waterlevel reading: I	Ory to 8.84 m bgs.	lough	· · · · · ·					677
6-398.GPJ JR	10.4		F	Roles & Assault	7400 E 4.5 175	05 - 10 6 Avenus	LOG	GED E	Y; L Falk		COMPLETION DEPTH: 8.84 m	676-
P 116			<i>)</i> —	. Рапо & Associa сонзитую в техтию еней	Edn Pho	nanton, AB T5\$ 1E7 ne: (780) 489-0700		IEWED			COMPLETION DATE: 27/6/12	4 7 7
띩				· *** Delector of the American Lat. + E		(780) 489-0800	L				Page	1 of 1

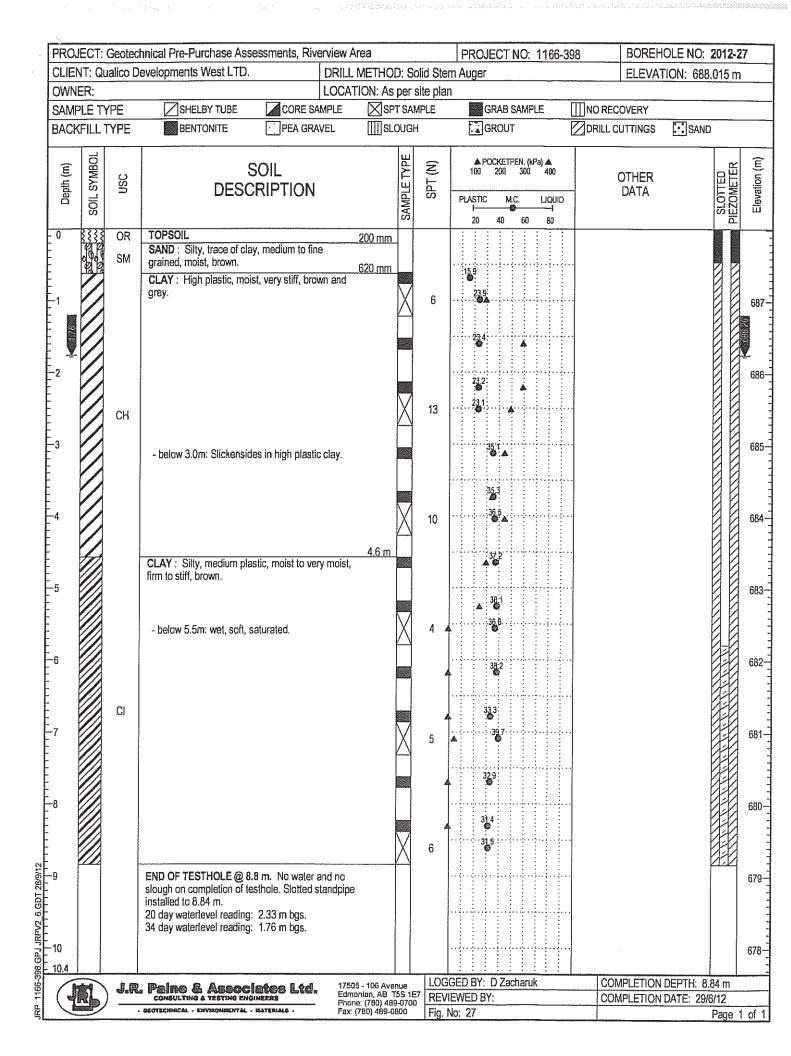

PROJ	ECT:	Geotec	hnical Pre-Purchase Asse	essments, Riverview A	Area		PR	OJECT NO: 1166-	398	BOREHOLE NO: 2012-	16
		ıalico D	evelopments West LTD.		METHOD: Sol			jer		ELEVATION: 685.068 m	n
OWN					TION: As per si		ın <u> </u>				
SAMF	LE TY	/PE	SHELBY TUBE	CORE SAMPLE	SPT SAM	PLE		GRAB SAMPLE		RECOVERY	
BACK	(FILL)	TYPE	BENTONITE	PEA GRAVEL	SLOUGH			GROUT	DRI	ILL CUTTINGS SAND	
Depth (m)	SOIL SYMBOL	OSO	DES	SOIL CRIPTION		SAMPLE TYPE	SPT (N)	PLASTIC M.C.	LIQUID	OTHER DATA	Elevation (m)
- 0	3333	OR	TOPSOIL		0 mm			20 40 60	80		68
-3		OR CH	-Below 1.2m: medium to h interbedded, trace oxides		200 mm 1.2 m		8	22.9 18.9 59.2 28.3 28.3 34.2	4	P.L. = 18.9 L.L. = 59.2 M.C. = 20.5 Soluble Sulphates: Mild	68
-5 -6			CLAY: very silty, very mogrey, sensitive	ist, medium plastic, soft			8	321 436.2 - 4 33.6			68
-7		Cl	-Below 6.3m: soft, grey		6.3 m		5	A 3011 A 314 A 314 A 313			67
-8			-Below 8.1m; wet	Im No water and as a	8.1 m		5 4	33.5: 37.1			67
10			end of testhole @ 8.4 on completion of testhole. 22 day waterlevel reading: 36 day waterlevel reading:	Dry to 8.84 m bgs.	iougn						67
(Ba		.jp	. Paine & Associ		05 - 106 Avenue			3Y: L Falk		COMPLETION DEPTH: 8.84 m	
(4	R _b))	CONSULTING & TESTING ENGI	Edu	tanton, AB T5S 1E7	RE\	/IEWED	BY:		COMPLETION DATE: 27/6/12	
			GEOTECHHICAL - ENVIRONMENTAL -	Fax:	ne: (780) 489-0700 (780) 489-0800	1				Page	1 6

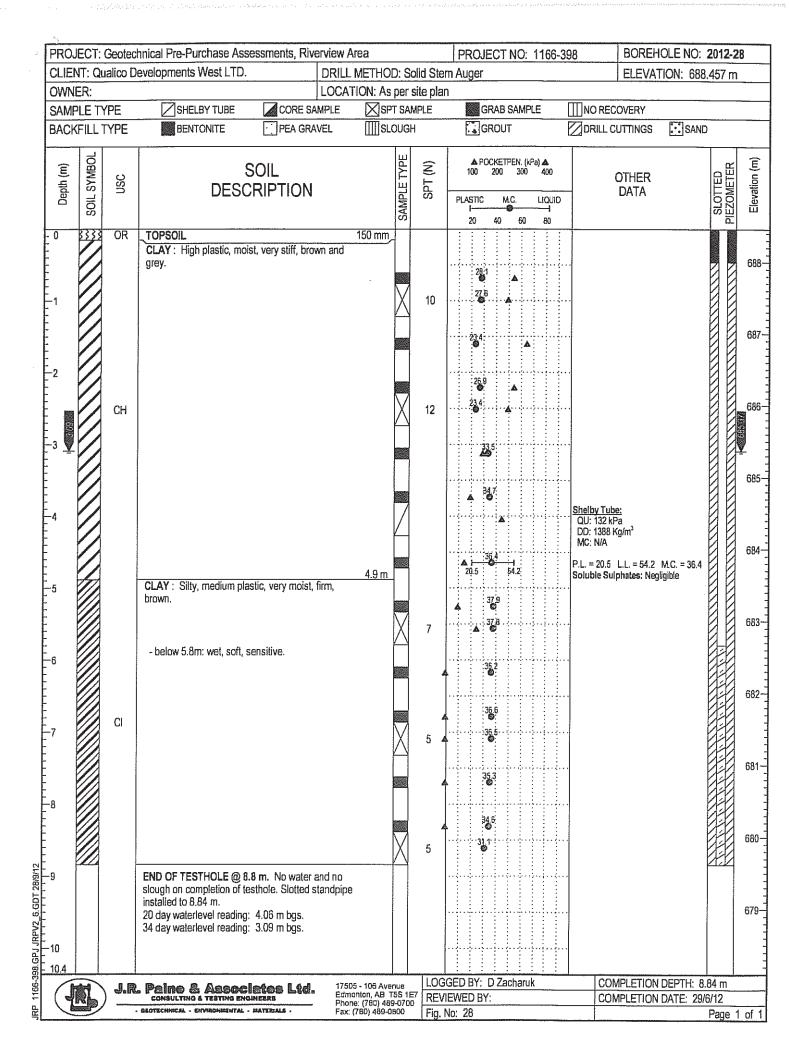
PROJEC	CT: Ge	otech	nical Pre-Purchase Asse	ssments, Rivervie	ew Area		PR	OJECT NO: 1166	-398	BOREH	OLE NO: 2012-	17
-		co De	evelopments West LTD.	***************************************	RILL METHOD: Soli			er		ELEVAT	ION: 686.50 7 r	n
OWNER					CATION: As per si		1					
SAMPLE			SHELBY TUBE	CORE SAMPL		LE		GRAB SAMPLE		RECOVERY		
BACKFI	LL TY	PE	BENTONITE	PEA GRAVEL	∭SLOUGH		<u>[</u>	GROUT	DRI	LL CUTTINGS	SAND	
Depth (m)	SOIL SYMBOL	nsc		SOIL CRIPTION		SAMPLE TYPE	SPT (N)	A POCKETPEN. (k 100 200 300 PLASTIC M.C.	Pa) ▲ 400 LiQUID	OTH DA'		Elevation (m)
- 0		OR	TOPSOIL CLAY: silty, moist, high pl	astic, very stiff	0 mm 200 mm	S		20 40 60	B0			
1 1 1		CH				X	8	87 107 175				686-
2		J 1			3.1 m	X	8	18:8 25 (A			684-
-4	CI	-CH	-Below 3.1m: medium to hiç interbedded	gh plastic, very silty	layers	X	11	24.4 23.4 	A			683-
5			-Below 4.9m: more silty, ver	ry moist, firm	4.9 m			▲ 34.6 ▲ 34.6		0.4.7.		682-
6		- Andreas Angles and A	CLAY: very sitly, very mois brown	st, low plastic, stiff,	5.5 m greyish			26.4		Shelby Tube; QU: N/A DD: 1526 Kg/m ³ MC: N/A		681-
7		DL				X	8	21.8 A				680-
8		tunis de constitución de const					and the second s	20.8				679-
6.cD 289312 0.			END OF TESTHOLE @ 8.8 on completion of testhole. 22 day waterlevel reading:		no slough	X	9	<u>A</u> 35 ⁺				678- 677-
9 10 10 10 10 10 10 10 10 10 10 10 10 10			36 day waterlevel reading: 1	8.17 m bgs.	17505 - 106 Avenue			Y: L Falk			DEPTH: 8.84 m	
			CONSULTING & TESTING ENGIN GEOTECHHICAL - ENVINCHMENTAL - E	IEERB	Edmonton, AB T5S 1E7 Phone: (780) 489-0700 Fax: (780) 488-0800	KEVI	EWED	BA:		COMPLETION		1 of 1



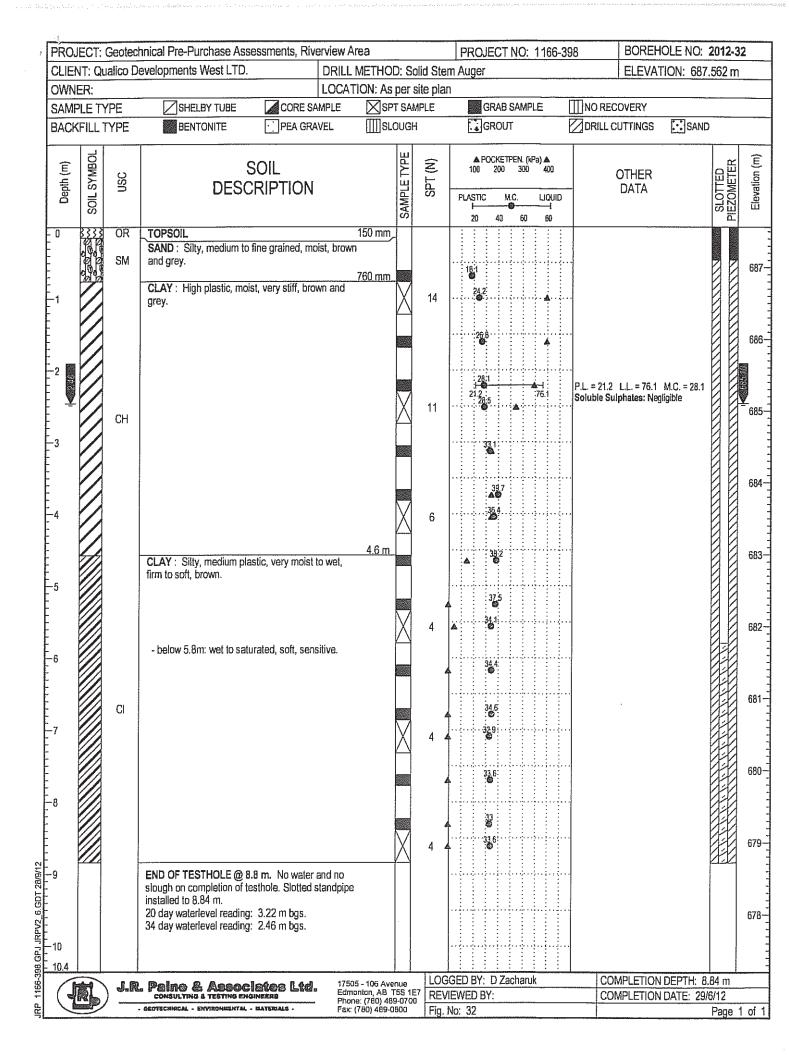


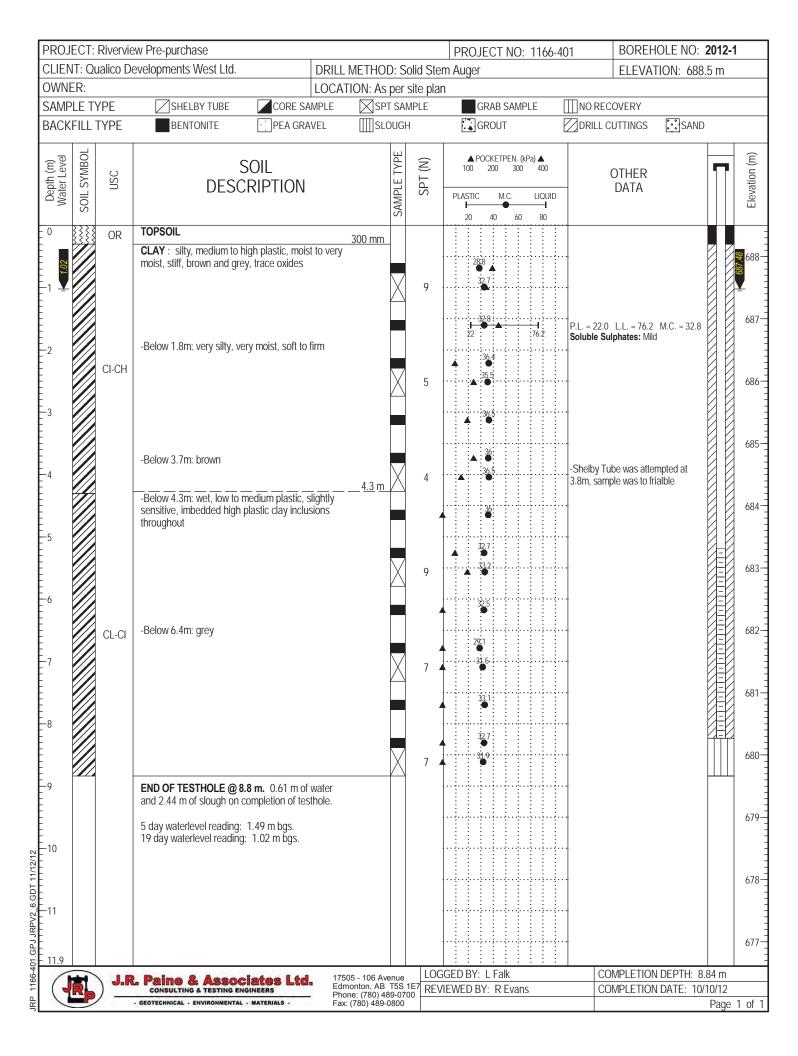



PROJEC	CT: G	eotech	nical Pre-Purchase Asse	essments, Rive	erview A	rea			PROJECT NO: 1166-	398	BOREH	OLE NO: 20	12-22	!
		ico De	evelopments West LTD.		DRILL	METHOD: Solid Stem Auger ION: As per site plan					ELEVATION: 689.198 m			
OWNER					•									
SAMPLE			SHELBY TUBE	CORE SA		SPT		PLE	GRAB SAMPLE		RECOVERY			
BACKFI	LL TY	PE	BENTONITE	PEA GRA	VEL	[[]]SLC	UGH		GROUT	DRIL	L CUTTINGS	SAND		
Depth (m)	SOIL	DSC P	DESC	OIL RIPTION			SAMPLE TYPE	SPT (N)	PLASTIC M.C. LIQUID 20 40 60 80	1	OTHER DATA		PIEZOMETER	Flavation (m)
-1 -2 -3		OR A-CH	CLAY: Sitty, medium to h moist, very stiff, brown. CLAY: High plastic, damp hard, brown.		ip to	1.2 m		15	16.8 17.1 16.9 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0					68 68 68
-5		ML -	SILT: clayey, moist, brown CLAY: Very silty, medium wet, firm to soft, brown.		oist to	4.9 m		9	36.2 A 23.1 A 36.2					68
-7 -8 <u>9900</u>		CI	SILT: Very moist to wet, s END OF TESTHOLE @ 8.8 slough on completion of tes installed to 8.84 w. 21 day waterland reading:	m. No water a thole. Slotted si Ory to 8.84 m b	tandpipe gs.	7.3 m /		7	△ 34.77 △ 35.52 △ 31.55 △ 37.52 △ 34.33					68 68
-10 10.4		J.R.	35 day waterlevel reading: i		17505	- 106 Aveni			GED BY: D Zacharuk EWED BY:		COMPLETION		m	67
100			GEOTECHICAL - EXVIRGNEENTAL - I	***************************************	Phone	: (780) 489- (80) 489-08(0700		No: 22	-	COMPLETION		ge 1	_

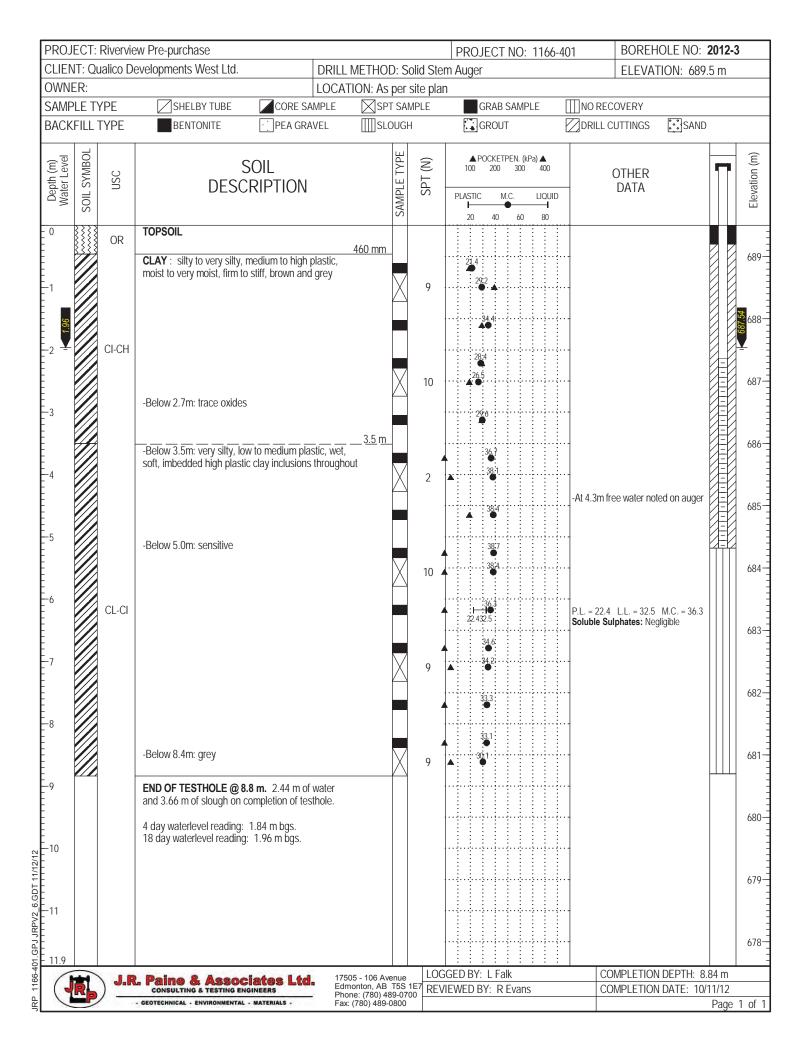


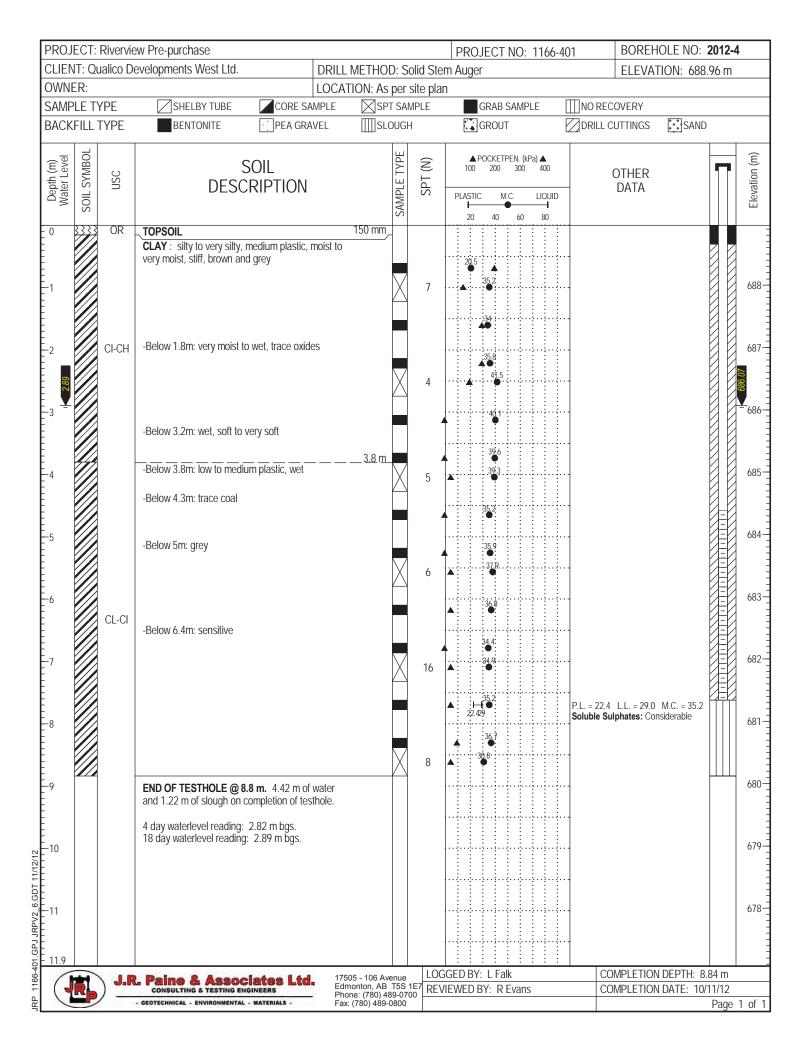
		hnical Pre-Purchase Asse				PROJECT NO: 1166-	398 BOF	REHOLE NO: 2012-25
	ualico D	evelopments West LTD.		L METHOD:			ELE	VATION: 689.042 m
OWNER:				TION: As pe				
SAMPLE T		SHELBY TUBE	CORE SAMPLE	SPT S.		GRAB SAMPLE	ⅢNO RECOVER	
BACKFILL	TYPE	BENTONITE	PEA GRAVEL	sloud	SH	GROUT	DRILL CUTTING	GS SAND
Depth (m)	OR OR		SOIL RIPTION	100 mm	SPT (N)	POCKETPEN. (kPa) 100 200 300 400 PLASTIC M.C. LIQUID 1 20 40 60 80	OTHE DATA	
2	Cl	CLAY: High plastic, mois grey.	st, very stiff, brown and	1.2 m	10	26.3 <u>A</u> 27.3 <u>A</u> 24.2 <u>A</u> 24.1 <u>A</u>		6
4	СН	CLAY: Silty, medium plas	stic, very moist, firm,	5.2 m	8	26.2 35.7 ▲ 36.9		66
7	CI	brown. - below 6.1m: Wet, soft, s	sensitive.	X	5	341: 347: 3344. 3356		6
3 00 00 00 4	7.000,000	END OF TESTHOLE @ 8. slough on completion of terinstalled to 8.84 m. 21 day waterlevel reading: 35 day waterlevel reading:	sthole. Slotted standpip 1.5 m bgs.	e	5 4	32.5		6
0.7			_4848 177	OF 400 Ac	1100	GGED BY: D Zacharuk	COMPLET	ION DEPTH: 8,84 m
(JIIL)	J.R	Palno & Associ	Edn	05 - 106 Avenue nonton, AB T5S 1	E7 DEV	TEWED BY:		ION DATE: 28/6/12
		GEGTECHNICIL - ENVIRONMENTAL, -	ENTERNALS - FAY	ine: (780) 489-07: : (780) 489-0800	/U }	No: 25		Page 1

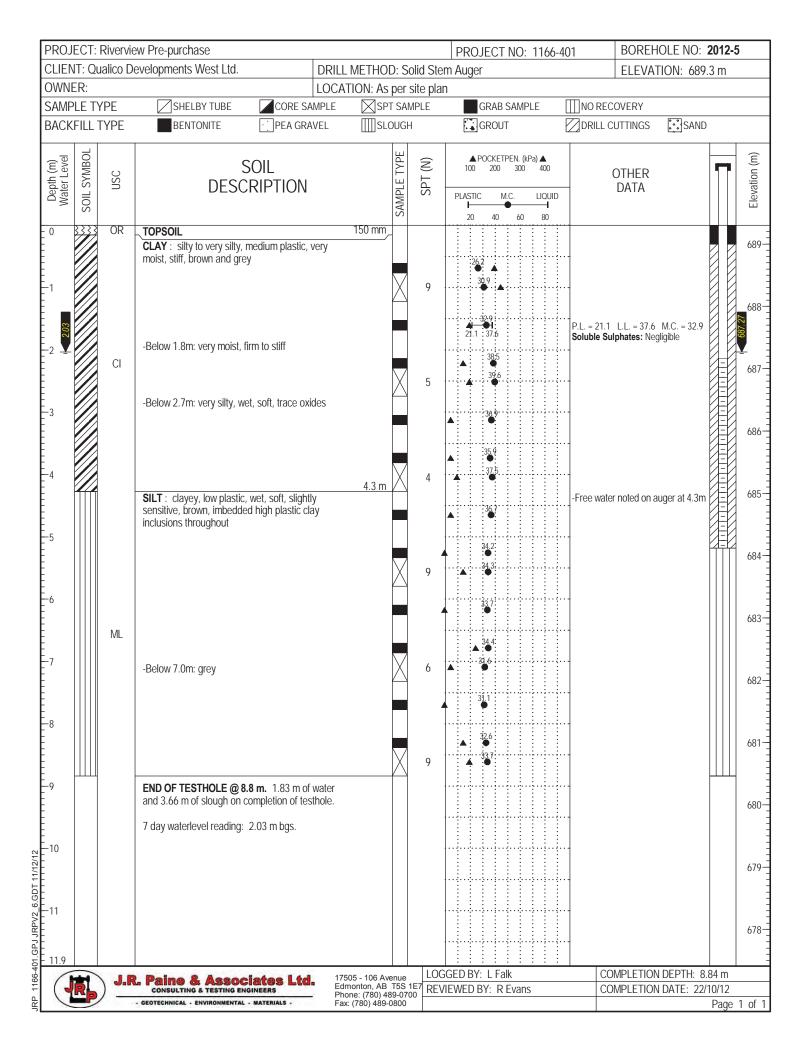


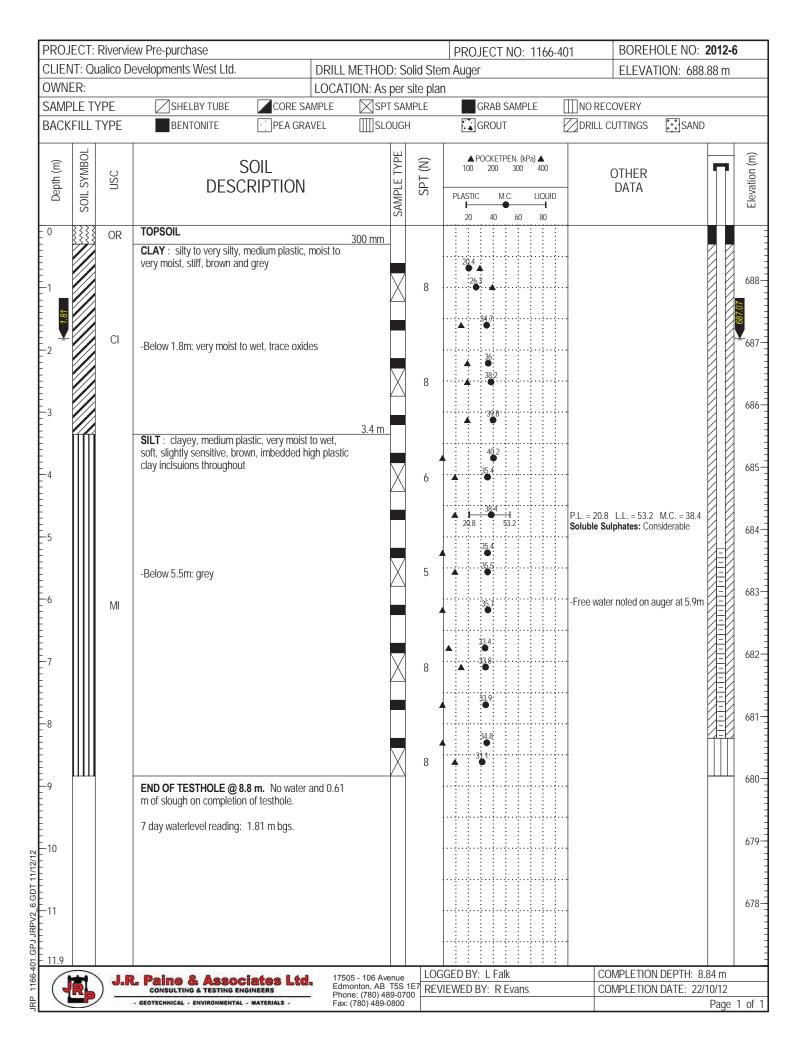


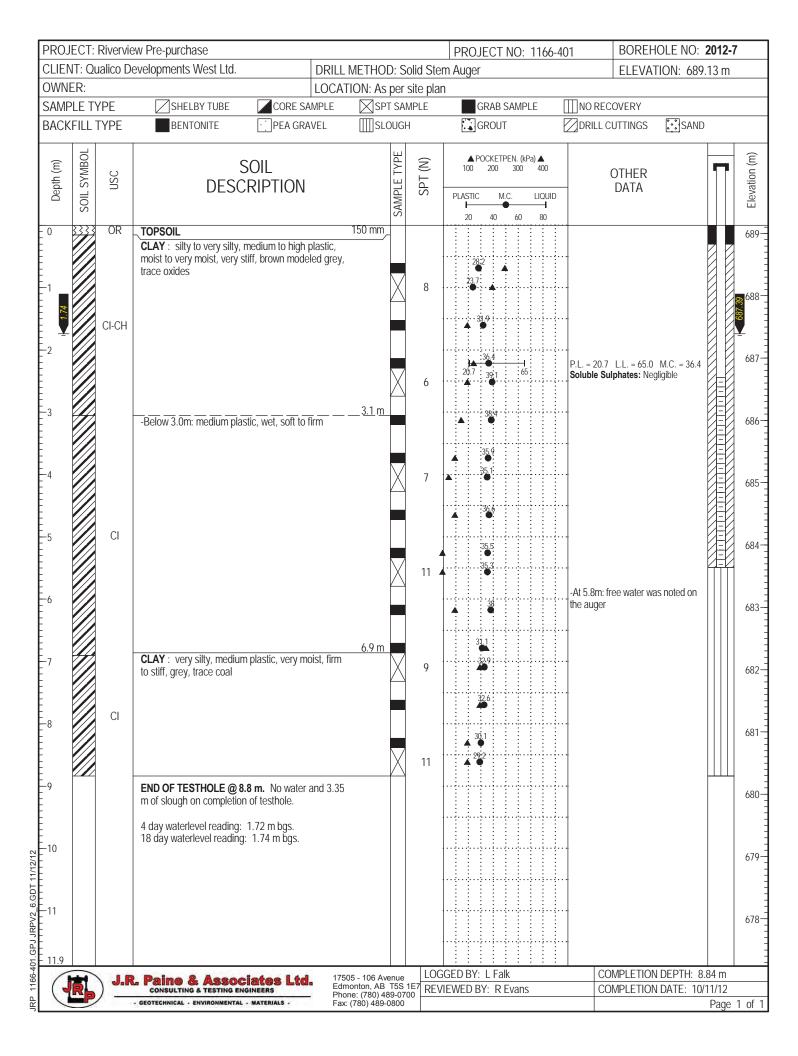
_			hnical Pre-Purchase Ass				PROJECT NO: 1166	398		OLE NO: 2012-	
		ualico D	evelopments West LTD.		RILL METHOD			***************************************	ELEVAT	FION: 688.992 n	n
OWN					CATION: As p						
	PLE T		SHELBY TUBE	CORE SAMPLI			GRAB SAMPLE		RECOVERY		
BACK	(FILL	TYPE	BENTONITE	PEA GRAVEL	∭SLO!	JGH	GROUT	DR	ILL CUTTINGS	SAND	
Depth (m)	SOIL SYMBOL	OR OR	DESC	SOIL RIPTION	150 mm	SAMPLE TYPE SPT (N)	PLASTIC M.C. LIQU 100 40 50 60	ID .	OTHER DATA	SLOTTED	Elevation (m)
3		СН	CLAY: High plastic, moisting plate of the common co		4.9 m	10	25 4 a 31,3 a 32,6				6886
		CI	END OF TESTHOLE @ 8. slough on completion of te installed to 8.84 m. 20 day waterlevel reading: 34 day waterlevel reading:	8 m. No water and nathole. Stotled standp	ad pipe	5	34.7				683 682 681
10.4		J.R	. Paine & Associ	isisas mara	17505 - 106 Avenu Edmonton, AB 755 Phone: (760) 489-0	1E7 D	DGGED BY: D Zacharuk EVIEWED BY:		COMPLETION COMPLETION	DEPTH: 8.84 m DATE: 29/6/12	
			BECTECHNICAL - ENVIRONMENTAL -	HATERIALS .	Fax: (780) 489-080	o Fi	j. No: 29			Page	1 of

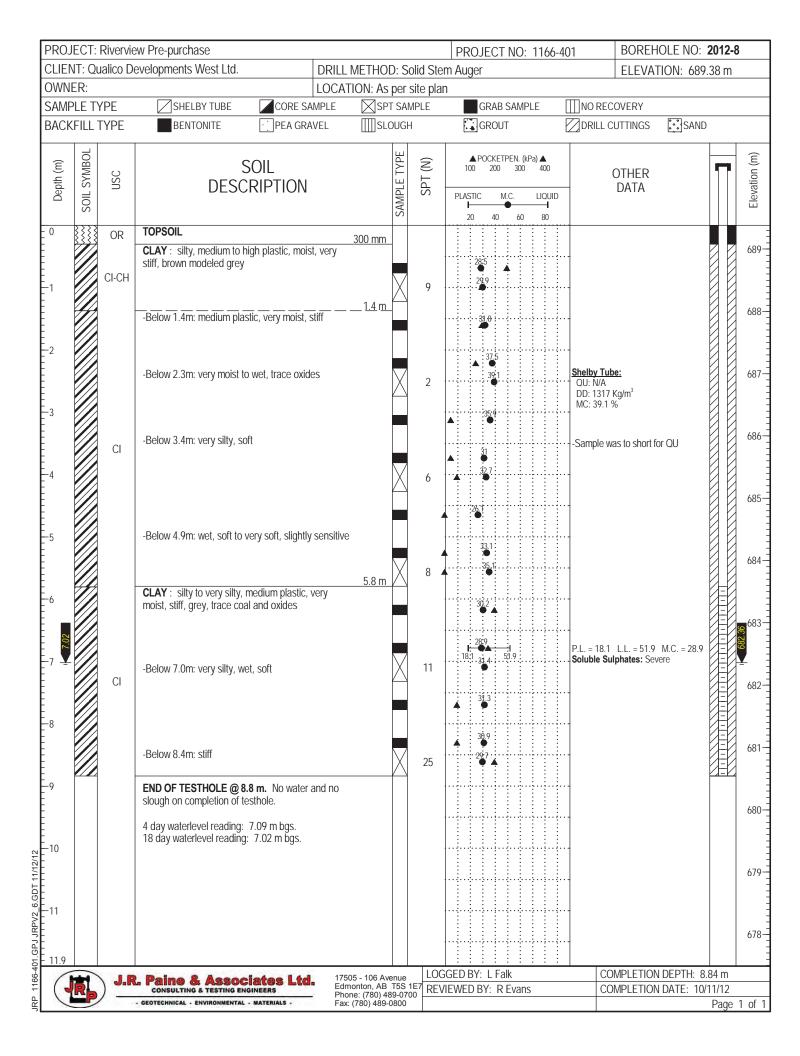

PROJ	ECT:	Geoted	hnical Pre-Purchase Asse	ssments, Rive	rview Are	а		PROJECT NO: 1166-3	398	BOREHOLE N	O: 2012- :	30
CLIEN	NT: QL	ialico D	evelopments West LTD.	***************************************	DRILL M			em Auger		ELEVATION: 6	387.562 n	n
OWN			P000000		LOCATIO							
	LE T		SHELBY TUBE	CORE SAM		SPT S		GRAB SAMPLE	∭NO REC			
BACK	FILL 1	TYPE	BENTONITE	PEA GRAV	/EL	[[]]slou	GH	GROUT	DRILL C	CUTTINGS 🖸 S/	AND	
Depth (m)	SOIL SYMBOL	nsc	DESCI	OIL RIPTION		SAMPI E TYPE	SPT (N)	PLASTIC M.C. LIQUID 20 40 60 60		OTHER DATA	SLOTTED PIEZOMETER	
0 -1 -2 -3 -3 -4 -5 -5 -6 -6 -7 -6 -6 -7 -6 -6 -7 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6 -6		CH	CLAY: High plastic, moist grey. CLAY: Silty, medium plast brown. END OF TESTHOLE @ 8.8 slough on to 8.84 m. 20 day waterlevel reading: 8 34 day waterlevel reading: 8	m. No water ar thole. Slotted sta	nsitive,	3.4 m	15	20 40 60 60 24 5	Shelby Tub QU: 220 kF DD: 1609 k MC: N/A P.L. = 16.4 Soluble Sul	e: Pa (g/m³ L.L. = 42.7 M.C. = 19 phates: Negligible		68 68 68 68
(Ji		J.R	Palno & Associa	tos Ltd.	Edmonto	106 Avenue in, AB T5S	1E7 DEM	GED BY: D Zacharuk IEWED BY:		APLETION DEPTH: APLETION DATE: 2		
			GEOLECHMENT - EMANDOMETALYT - EL	ATERIALE .	Fax: (780	780) 489-07(3) 489-0800	~~	No: 30	- 311		Page 1	1 0

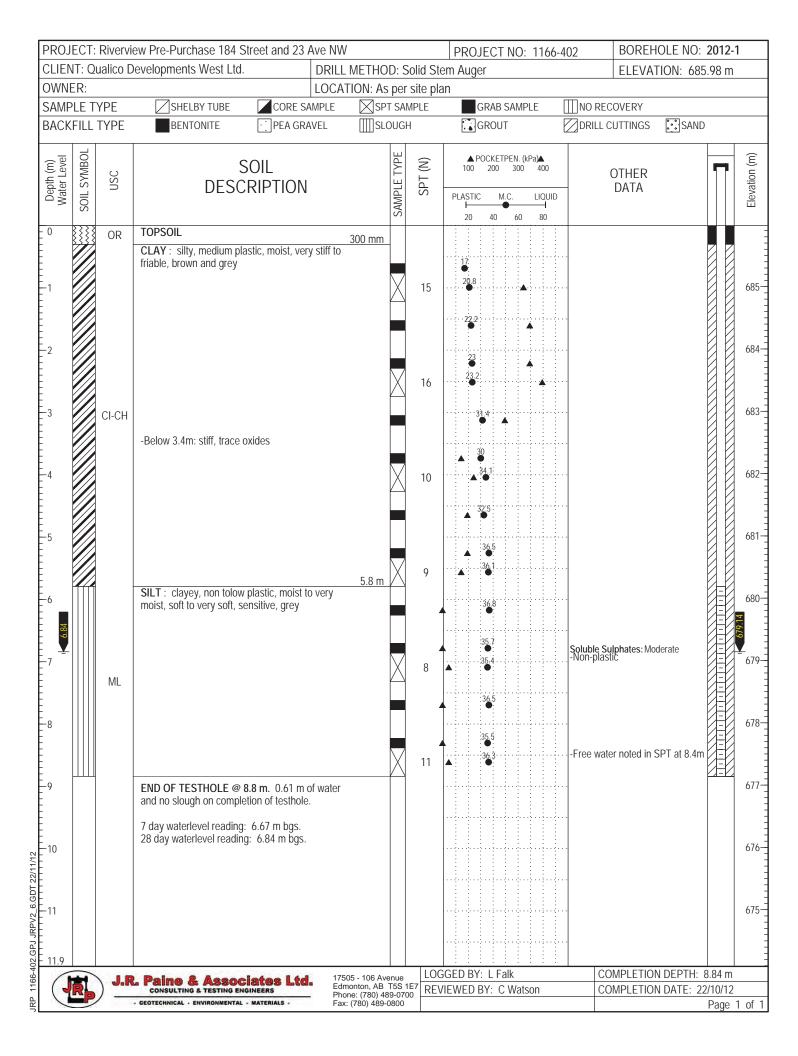

PROJ	ECT:	Geotec	chnical Pre-Purchase Asse	essments, Riverv	iew Area		PROJECT NO: 1166	398	BOREH	IOLE NO: 20	12-31
		ualico D	evelopments West LTD.	D	RILL METHOD	: Solid S	em Auger		ELEVA"	TION: 686.23	19 m
OWNE			-		OCATION: As I						
SAMP			SHELBY TUBE	CORE SAMP		SAMPLE	GRAB SAMPLE	∭NO RE			
BACK	FILL	TYPE	BENTONITE	PEA GRAVE	L ∭SLC	UGH	GROUT	DRILL	CUTTINGS	SAND	
Depth (m)	SOIL SYMBOL	OSO	DESC	SOIL RIPTION		SAMPLE TYPE SPT (N)	▲ POCKETPEN. (4Pa) ▲ 100 200 300 400 PLASTIC M.C. LIQUIC 1)	OTHER DATA	P C C C C C C C C C C C C C C C C C C C	PIEZOMETER
-1 -2 -3 -4 -5 -6		CH	CLAY: High plastic, mois grey. CLAY: Silty, medium plastirm to soft, sensitive, brown to soft, sensitive, sensitive	itic, very moist to wn.	et, 4.9 m	13 10 8 3	22,28 23,11 23,6 22,33 23,1 23,				66 66 68 68 68 67
10	n je de Mondo		installed to 8.84 m. 20 day waterlevel reading: 34 day waterlevel reading:	3.94 m bgs. 3.25 m bgs.				- 44444			67
		_I 60	Beine & Acces	-A 1 4-4	17505 - 106 Avenu	_B LO	GGED BY: D Zacharuk	CO	MPLETION	DEPTH: 8.84 r	
(4	野)	waliu-	. Раіло & Associ сонзилтно а театіно енці	Marka Frai	Edmonton, AB T5: Phone: (780) 489-0	1E7 DE	/IEWED BY:			DATE: 29/6/12	
		-	SECTECHNICAL - ENVIRONMENTAL - I	TVAESITÉ .	Fax: (780) 489-080		No: 31				je 1 o

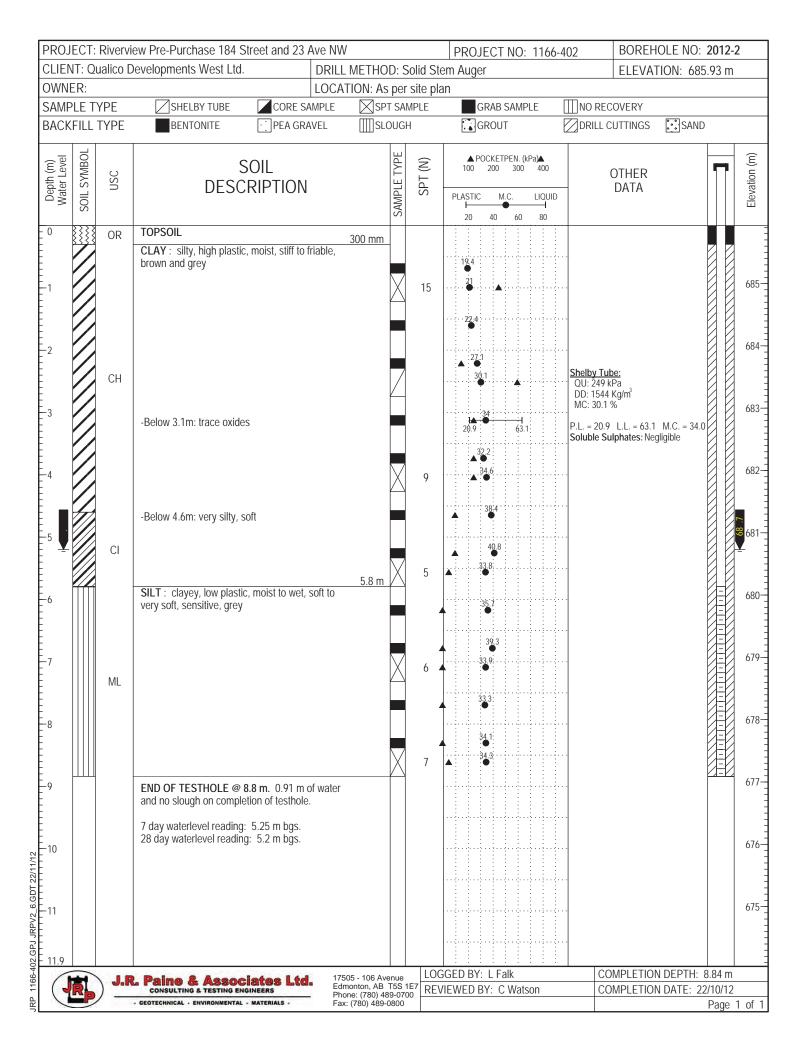


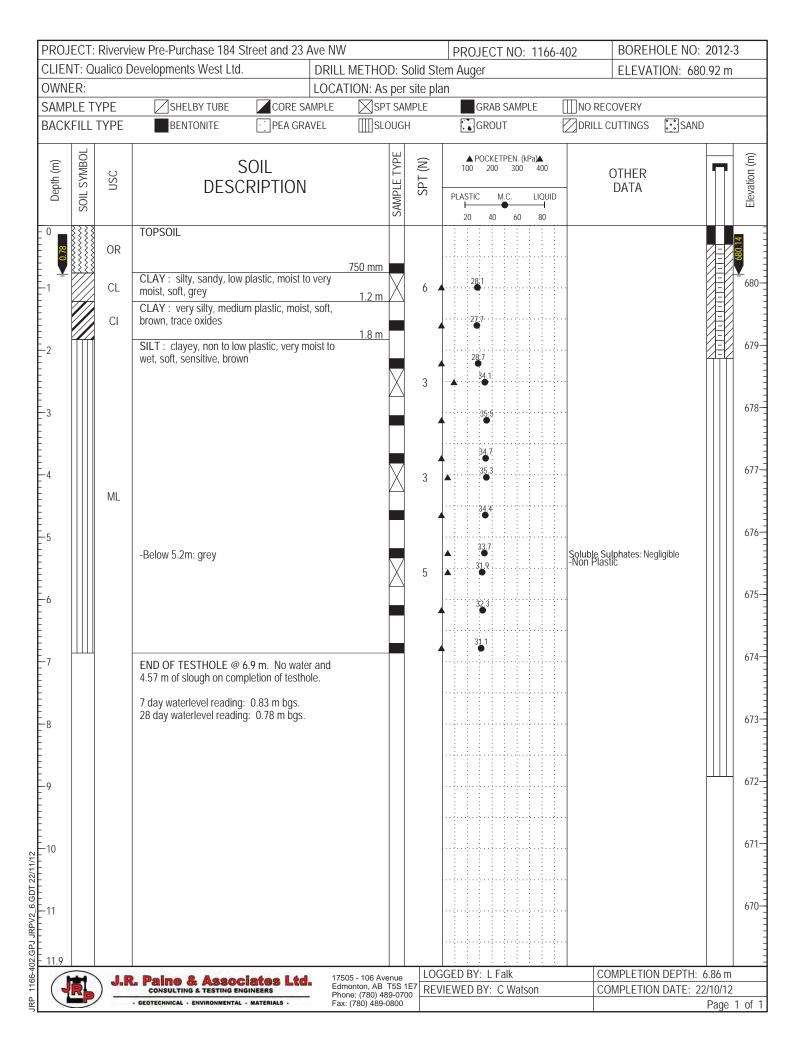


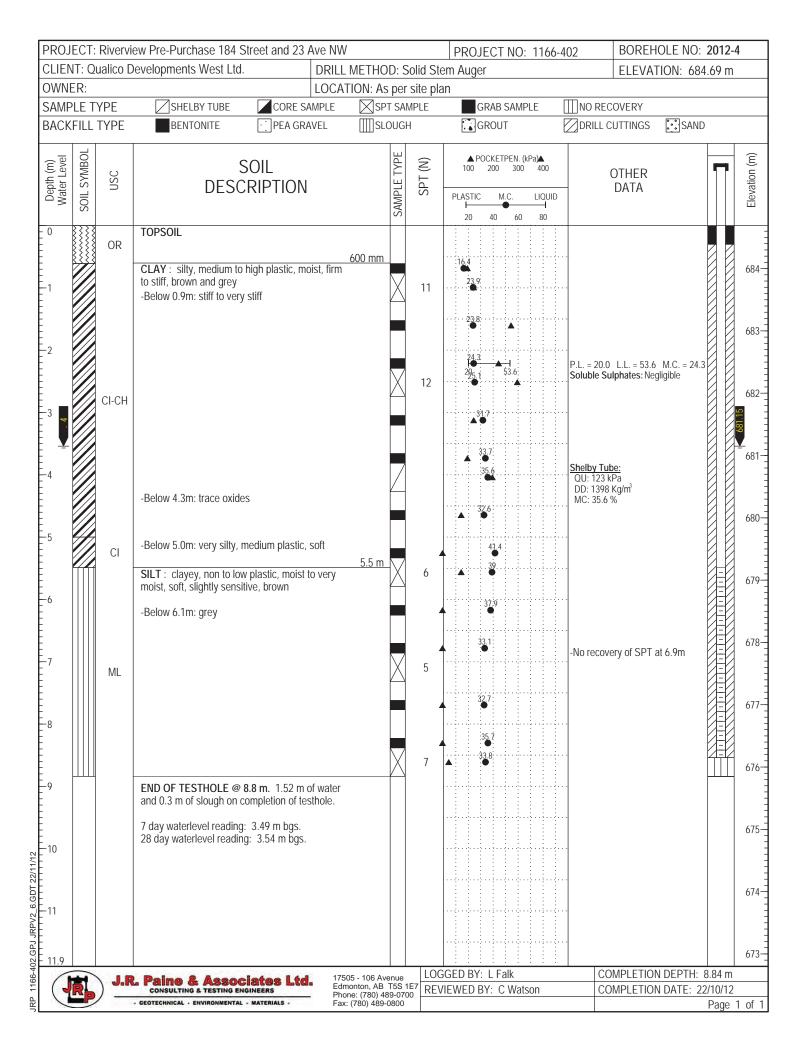


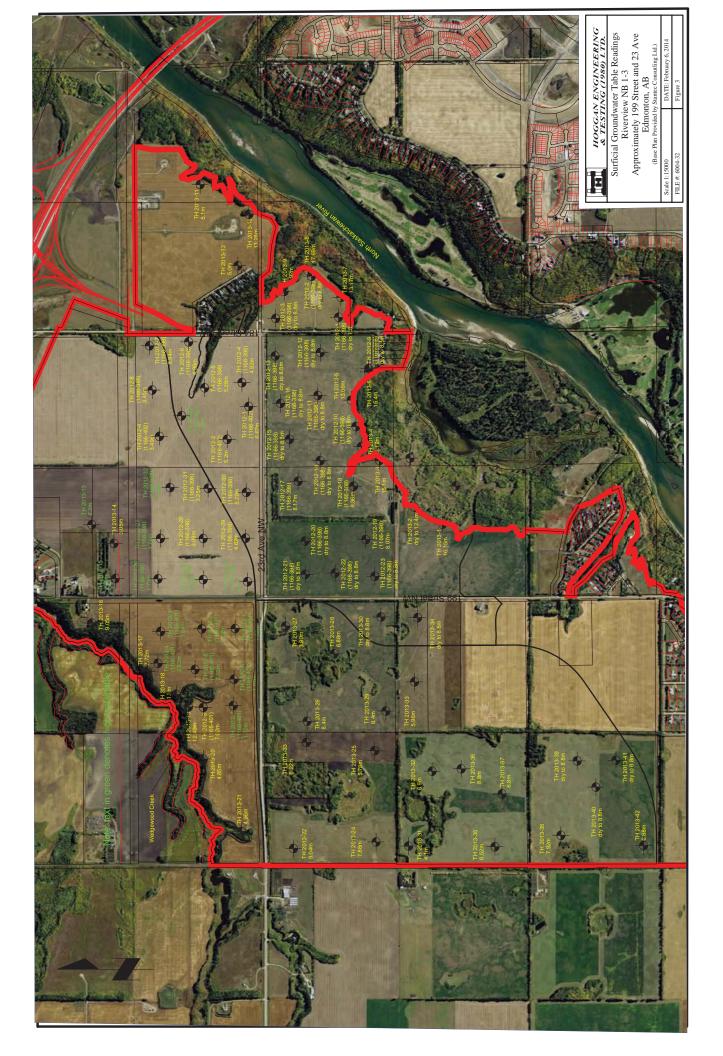


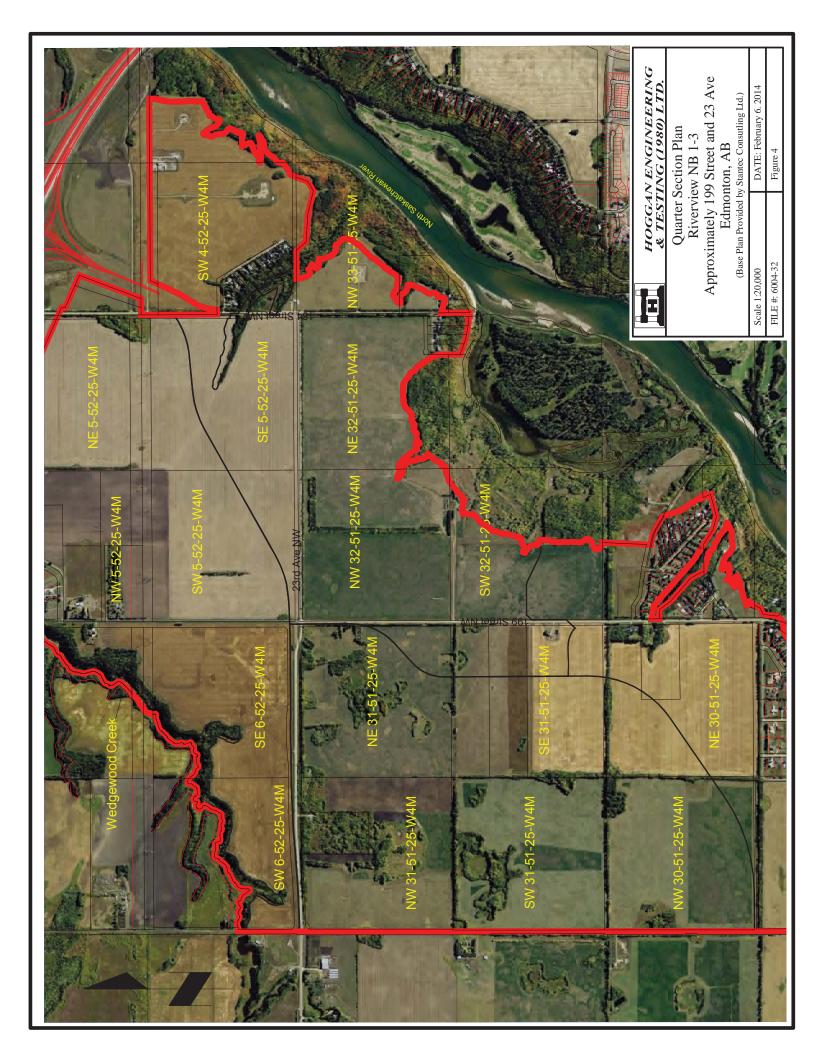


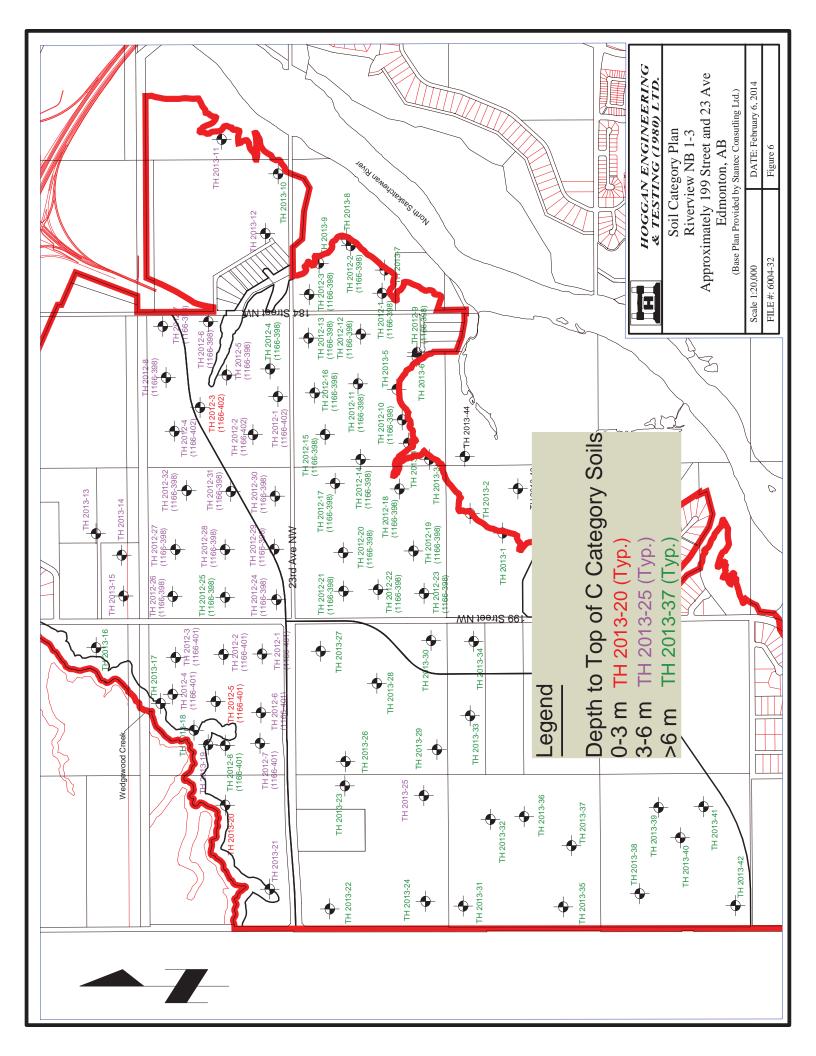











Hoggan Engineering & Testing (1980) Ltd.
ADDENDIND
APPENDIX B Watertable Plan Quarter Section Plan Soil Category Chart Soil Category Plan
Watertable Plan, Quarter Section Plan, Soil Category Chart, Soil Category Plan

Soil Category 2013-1 2013-2 2013-3 2013-4 2013-5 2013-6 2013-7 2013-8 B 9,1	Riv	Riverview Neighborhoods 1-3	Jorhoods 1	۲,								
2013-1 2013-2 2013-3 2013-4 2013-5 2013-6 2013-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)								
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2013	2013 Testholes	-	-			•		-		
0 0	2013-5 2013-6 2013-7 2013-8	2013-9 2013-10 2	2013-11 2013-12	-12 2013-13	3 2013-14	2013-15	2013-16	2013-17	2013-18	2013-19 20	2013-20 20	2013-21
None None 8.8 4.3 6.5 5 None None None 8.7 None 2013-22 2013-23 2013-24 2013-25 2013-26 2013-27 2013-28 0 0 0 0 0 0 0 0 4.6 4.3 4.9 4.3 4.6 3.0 4.0 None 6.4 None 5.5 None None None None None 0 0 0 0 0 0 4.9 7.3 5.8 4.0 None None None None None None None 1.6 5.5 None 0 0 5.8 4.0 0 0 0 0 0 0 5.8 4.9 3.4 5.2 3.1 4.6 4.9 5.8 4.9 0 0 0 0 0 0 <td>0 0 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
None None None None None None None None R.7 None 2013-22 2013-23 2013-24 2013-25 2013-26 2013-27 2013-28 0 0 0 0 0 0 0 4.6 4.3 4.9 4.3 4.6 3.0 4.0 None 6.4 None 5.5 None None 4.0 None None 4.9 4.0 None 4.0 0 0 1.8 7.3 5.8 4.0 None 4.6 5.5 5.8 2012-22 2012-24 2012-25 2012-25 2012-25 2012-25 2012-25 2012-26 2012-27 2012-28 2012-22 2012-24 2012-25 2012-26 2012-25 2012-27 2012-28 5.5 5.8 None 7.3 5.3 6.1 4.9 5.5 5.8 4.9 1.8 2.0	4.3 6.5 5	8.8 8.4 B	Below 8.4 None	3.5	3.1	2.7	4.5	4	2.4	2.4 Be	Below 6.4	က
2013-22 2013-23 2013-24 2013-25 2013-28 2013-28 2013-28	None 8.7 None None	None None	3.8 5	4.1	4.3	4.3	9.1	9.1	None	5.8	2.7	5.3
2013-22 2013-23 2013-25 2013-26 2013-27 2013-28 0 0 0 0 0 0 0 4.6 4.3 4.9 4.3 4.6 3.0 4.0 None 6.4 None 5.5 None None None None None None None 4.6 5.5 5.8 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 11 1.8 1.8 1.8 1.8		2013	2013 Testholes					·				
0 0	2013-26 2013-27 2013-28 2013-29	2013-30 2013-31 2	2013-32 2013-33	-33 2013-34	4 2013-35	2013-36	2013-37	2013-38	2013-39	2013-40 20	2013-41 20	2013-42
A6 4.3 4.6 4.6 3.0 4.0 4.0 None None </td <td>0 0 0</td> <td>0 0</td> <td>0 0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
None 6.4 None 5.5 None A.0 None None None None None None None None None A.9 S.8 4.0 None None None A.9 S.9 S.8 A.0 None A.9 S.8 S.8 A.9 S.9 S.8 S.9 S.9 S.8 S.9 S.9 S.8 S.9 S.9 S.8 S.9	4.6 3.0 4.0	4.6 5.8	5.8	8 4.6	4.6	9.6	6.7	5.9	5.8	5.8	5.8	9.7
2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	None None None	6.1 None	None 10.4	4 8.1	None	None	7.3	None	None	None	None	None
2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 4.9 7.3 5.8 4.0 None None None None None None 4.0 0 0 0 0 0 2012-22 2012-23 2012-24 2012-25 2012-26 2012-27 2012-28 2012-28 2012-28 2012-28 2012-28 4.9		JRP FI	File 1166-398									
0 0	2012-5 2012-6 2012-7 2012-8	2012-9 2012-10 2	2012-11 2012-12	:-12 2012-13	3 2012-14	2012-15	2012-16	2012-17	2012-18	2012-19 20	2012-20 20	2012-21
4.9 7.3 5.8 4.0 None None None None None None None A.6 5.5 5.8 A.0 None A.6 5.5 5.8 A.0 None A.6 5.5 5.8 A.0 None A.0 <	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0
None None 4.6 5.5 5.8 2012-22 2012-23 2012-24 2012-25 2012-27 2012-27 2012-28 0 0 0 0 0 0 0 5.8 4.9 3.4 5.2 3.1 4.6 4.9 None 7.3 5.3 6.1 4.9 5.5 5.8 None 7.3 5.3 6.1 4.9 5.5 5.8 1.8 2.1 2012-2 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 0 1.8 2.3 3.5 1.8 1.8 1.8 None Legend and Notes Instholes with relatively shallow C Category soils Less than 3 meters defensed and Notes and the relatively shallow C Category soils Less than 3 meters defensed and Notes and the relatively shallow C Category soils Less than 3 meters defensed and Notes and the relative states and the r	None None None	7.3 4.3	6.0 3.8	3 5.5	4.9	4.9	5.3	6.4	6.7	6.4	4.6	4.3
State	4.6 5.5 5.8 5.5	None None	None None	ne None	None	None	None	None	None	None	None	7.3
2012-22 2012-24 2012-25 2012-26 2012-27 2012-28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JRP File 1166-398											
0 0 0 0 0 0 5.8 4.9 3.4 5.2 3.1 4.6 4.9 None JRP File 1166-401 2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 1.8 2.3 3.5 1.8 1.8 None 4.3 5.0 3.2 2.7 3.4 3.1 Testholes with relatively shallow C Category soils Less than 3 meters defended and manual maters of the color of the	2012-26 2012-27 2012-28 2012-29	2012-30 2012-31 2	2012-32									
5.8 4.9 3.4 5.2 3.1 4.6 4.9 4.9 5.8 None JRP File 1166-401 JRP File 1166-401 2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 1.8 2.3 3.5 1.8 1.8 None 4.3 5.0 3.2 2.7 3.4 3.1 Legend and Notes	0 0 0	0 0	0									
None 7.3 6.1 4.9 5.5 5.8 2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 1.8 2.3 3.5 1.8 1.8 1.8 None 4.3 5.0 3.2 2.7 3.4 3.1 Legend and Notes Testholes with relatively shallow C Categoory soils Less than 3 meters deters determined to the color of the	3.1 4.6 4.9	3.4 None	4.6									
2012-1 2012-2 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.9 5.5 5.8	6.0 4.9	5.8		ſ							
2012-1 2012-2 2012-3 2012-4 2012-5 2012-6 2012-7 0 0 0 0 0 0 0 1.8 2.3 3.5 1.8 1.8 1.8 None 4.3 5.0 3.2 2.7 3.4 3.1 Legend and Notes Testholes with relatively shallow C Categoory soils Less than 3 meters defeated and and the relatively shallow C Categoory soils Less than 3 meters defeated and and and and and and and and and an	RP File 1166-401	L	JRP File 1166-402	402								
1.8 2.3 3.5 1.8 1.8 1.8 None 4.3 4.3 5.0 3.2 2.7 3.4 3.1 Legend and Notes Testholes with relatively shallow C Category soils Less than 3 meters de	2012-5 2012-6 2012-7 2012-8	Soil Category 2012-1	2012-2 2012-3	2-3 2012-4	4							
1.8 2.3 3.5 1.8 1.8 1.8 None 4.3 4.3 5.0 3.2 2.7 3.4 3.1 Legend and Notes Testholes with relatively shallow C Category soils Less than 3 meters de	0 0 0	0 V	0 None	0 er								
Legend and Notes Testholes with relatively shallow C Category soils Less than 3 meters de	1.8 None	B 4.0										
<u>Legend and Notes</u> Testholes with relatively shallow C Category soils Less than 3 meters depth	2.7 3.4 3.1	2.8	5.8	0.0								
Testholes with relatively shallow C Category soils Less than 3 meters depth			Category	Vior								
Testholes with relatively shallow C Category soils Less than 3 meters depth				656								
	C Category soils Less than 3 meters depth		A	Satisfactory	ctory							
Testholes with moderate depth to C Category soils, 3.1- 6.0 meters depth	o C Category soils, 3.1- 6.0 meters depth		В	Fair								
Testholes with deep or no C Category soils, Less than 6 meters depth	egory soils, Less than 6 meters depth		O	Poor								
0 depth means below topsoil.												

File # 6004-32 Geotechnical Report

Slope Stability Assessment completed by Hoggan Engineering & Testing (1980) Ltd. (March 2014)

FILE NO: 6004-32

SLOPE STABILITY ASSESSMENT WEDGEWOOD CREEK PROPOSED RIVERVIEW NEIGHBOURHOODS 1-3 199 STREET AND 23 AVENUE NW EDMONTON, ALBERTA

March 2014 Hoggan Engineering & Testing (1980) Ltd.

17505 - 106 Avenue Edmonton, Alberta **T5S 1E7**

PHONE: 780-489-0700 **FAX:** 780-489-0800

Setback Drawings and GSlope Analysis Printouts

FILE NO: 6004-32

SLOPE STABILITY ASSESSMENT WEDGEWOOD CREEK PROPOSED RIVERVIEW NEIGHBOURHOODS 1-3 199 STREET AND 23 AVENUE NW EDMONTON, ALBERTA

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	EXISTING REPORT REVIEW	2
4.0	FIELD INVESTIGATION	3
5.0	LABORATORY TESTING	4
6.0	SOIL CONDITIONS	4
7.0	GROUNDWATER CONDITIONS	5
8.0	AIR PHOTO REVIEW	6
9.0	SITE OBSERVATIONS	7
10.0	GEOLOGY	9
11.0	SOILS DESIGN PARAMETERS AND COMPUTER ANALYSIS	10
12.0	SLOPE DISCUSSION AND RECOMMENDATIONS	11
13.0	CLOSURE	13
	ENDIX A lans and Testhole Logs	
	ENDIX B notos, LIDAR Drawing, and Site Photos	
APP	ENDIX C	

SLOPE STABILITY ASSESSMENT

PROJECT: Proposed Riverview Neighbourhoods 1-3

Wedgewood Creek

LOCATION: 199th Street and 23rd Avenue NW

Edmonton, Alberta

CLIENT: Ownership Group

c/o Stantec Consulting Ltd.

10160 – 112th Street Edmonton, Alberta

T5K 2L6

ATTENTION: Nick Dyjach

1.0 INTRODUCTION

This report presents the results of the subsurface investigation made on the site of the proposed Riverview Neighborhood development in Edmonton, Alberta. The objective of the investigation was to assess the stability of the existing Wedgewood Creek natural slope within the neighborhood and provide geotechnical discussion and recommendations based on the assessment, including development setbacks from the top-of-bank. Authorization to proceed was received from Nick Dyjach of Stantec Consulting Ltd. Fieldwork for the project was completed in September to December 2013.

Hoggan is also performing the Riverview Neighborhood geotechnical investigation for the site and other lands to the south and east and this investigation and this NSP work is described in a separate report.

2.0 SITE DESCRIPTION

The proposed development is located in southwest Edmonton, Alberta, on the south and east side of Wedgewood Creek. The intersection of 199 Street and 23 Avenue NW is adjacent to the subject site. A power line is present onsite and crosses the creek in the eastern portion of the project. There is a break in the study boundaries at this location. Overall, the site tablelands

consisted of open flat to rolling terrain all of which is being farmed. The boundaries of the slope assessment are shown on a plan in Appendix A and consist of existing 215 Street on the west and existing 199 Street on the east. Only the south/east side of the creek valley was assessed by our study. Not the entire Wedgewood Creek ravine within Riverview Neighborhoods 1-3 is included in the scope of this report. There is an area of existing houses east of 199 Street that were not analysed in this assessment.

Wedgewood Creek is a tributary to the North Saskatchewan River and has its head waters west of the city in Parkland County. The height of the slope within the assessment scope ranges from 7 meters at 215 Street to 14 meters at 199 Street. The creek valley is undeveloped except for the existing streets at the two project ends which have earthen berms across the valley with culverts carrying the creek flow through the fill.

The proposed neighborhood planning places mainly residential development along the project top-of-bank.

Access to the testholes was gained off 199 Street, 215 street, and 23 Avenue.

3.0 EXISTING REPORT REVIEW

A search for geotechnical information was requested from the City of Edmonton Engineering Services Library and resulted in no existing reports for the study area.

Hoggan, and our affiliate firm J.R. Paine & Associates Ltd., performed the following investigations on the subject site:

- Preliminary Geotechnical Assessment, Riverview Lands, 199th Street and 23rd Avenue NW, Edgemont Subdivision, Edmonton, Alberta, JRP File #1166-401, December 2012.
- Slope Stability Assessment, Proposed Edgemont Neighborhood, North and West Bank of Wedgewood Creek, 215 Street and 35 Avenue, Hoggan File #6004-22, June 2010.

Hoggan reviewed the above noted reports and found the soil conditions encountered in the existing report testholes to be basically the same as encountered in the subject slope study.

Hoggan was also supplied the following Report for our review:

• Erosion Study for Wedgewood Creek at Edmonton, Golder Associates Ltd., Report Number 12-1373-0047, December 2012.

The Golder Report contained several considerations for the slope stability of Wedgewood Creek at this site. The site reconnaissance found no erosion risk sites in the slope assessment area, although 17 sites were found downstream of 199 street, northeast of the slope site. The predicted increased Creek flow above historical levels due to land development in the Creek watershed was 11% and the Report stated no widespread erosion should occur from this increased flow. The Report stated that beaver activity greatly reduced the flows in the Creek and such rodent activity should be maintained for all future development. Hoggan agrees with this recommendation based on our slope analysis and site observations. The undersized culverts at 215 street and 199 Street were also stated in the Report to reduce Creek flows and reduce erosion. Any changes to these culverts should consider the erosion effects, stated the Golder Report.

4.0 FIELD INVESTIGATION

The soils investigation for this project was undertaken in September to December 2013 utilizing a truck mounted drill rig owned and operated by Mobile Augers and Research Ltd. of Edmonton, Alberta and SPT Drilling Ltd. of St. Albert, Alberta. A total of six testholes were drilled in the proposed project area as part of this investigation, as shown on the attached site plan. The testholes were advanced to depths between 13.4 and 31.0 meters below ground surface. The testholes were advanced at locations chosen, and surveyed by Hoggan.

The testholes were advanced with 150-millimeter diameter solid or hollow stem augers in 1.5-meter increments. A continuous visual description was recorded on site, which included the soil types, depths, moisture, transitions, and other pertinent observations. Disturbed samples were removed from the auger cuttings at 750-millimeter intervals for laboratory testing. Standard Penetration Tests c/w split spoon sampling or Shelby Tube samples were also taken at regular 1.5-meter intervals in the testholes.

Following the drilling operation, slotted piezometric standpipes were inserted into all testholes for watertable level determination. The testholes were backfilled with cuttings, with a bentonite seal placed at the surface of the testholes. Watertable readings were obtained between 1 and 58 days after drilling.

5.0 LABORATORY TESTING

All disturbed bag samples returned to the laboratory were tested for moisture content. In addition, the plastic and liquid Atterberg Limits and soluble soil sulphate concentrations were determined on selected samples. The Shelby Tube samples were tested for unconfined compressive strength and dry density. Lab results are included on the attached testhole logs located in the Appendix.

6.0 SOIL CONDITIONS

A detailed description of the soils encountered is found on the attached testhole logs in the Appendix. In general, the soil conditions at this site consisted of topsoil, underlain by a native deposit of clay. Layers of silt material were encountered in some testholes. Within the deeper testholes, clay till was encountered below the silt or clay. The geology of the soils is given in Section 10.0.

TOPSOIL

Surficial topsoil was the first soil encountered in the majority of the testholes. This material was generally moist, black in color, and extended to between 50 and 750 millimeters below ground surface (BGS). Topsoil depths are known at the testhole locations only and may vary between testholes.

CLAY

In all of the testholes, a lacustrine clay material was encountered near the surface. The material was typically brown to grey in colour, soft to stiff, silty to very silty, low to high plastic, and damp to wet. With depth, the clay material typically became very silty, soft, moist to wet, and very sensitive or transitioned into silt. Within the high plastic clay, slicken sides were noted. Within the low plastic layers, odd high plastic seams were noted. The moisture content of this material was typically between 10 and 40 percent. Atterberg Limit tests on this soil revealed plastic limits between approximately 16 to 20 percent, and liquid limits from approximately 29 to 78 percent. Standard Penetration Test "N" values were normally in the range of 2 to 19 blows per 300 millimeters. Testholes 2013-20 and 2013-21 were terminated within this clay material.

SILT

Silt was encountered in Testhole 2013-16 below the lacustrine clay material noted. The silt material was typically clayey, sandy, low plastic, moist to wet, firm to very soft, grey, trace to very sensitive. Moisture contents typically ranged from approximately 27 to 36 percent. Atterberg Limit test on this soil revealed plastic limit of 21.1 percent, and liquid limit of 29.4 percent. Standard Penetration Test "N" values were in the range of 5 to 7 blows per 300 millimeters.

CLAY TILL

Below the silt or clay, clay till material was encountered in Testholes 2013-16 to 2013-19 at depths between 11.9 to 16.6 meters BGS. This clay till material was typically silty, sandy to very sandy, medium to high plastic, moist to very moist, firm to very stiff, brown and/or grey in color and featured trace coal, gravel and sand pockets or lens. Within the clay till sand seams and/or layers were encountered in several of the testholes. Moisture contents typically ranged from approximately 12 to 29 percent. Standard Penetration Test "N" values were typically in the range of 10 to 50 or higher blows per 300 millimeters. Testholes 2013-16 to 2013-19 were terminated in this clay till material.

At the completion of drilling, variable accumulations of free water and/or slough material were noted in some of the testholes. Only testholes that were found to have water and/or slough material accumulation at the completion of drilling are shown in the table below:

Groundwater Seepage And Sloughing Conditions At Completion						
	Approximate Water Thickness At Hole					
Testholes	Bottom (m) Bottom (m)					
2013-16	dry	11.20				
2013-19	12.65	12.65				
2013-20	3.05	none				

7.0 GROUNDWATER CONDITIONS

The groundwater table within this study was variable, with low to moderate readings. It should be noted that water table levels may fluctuate on a seasonal or yearly basis, with the highest readings obtained in the spring or after periods of heavy rainfall. The readings below

should be below the seasonal average levels, as they were recorded in the months of November, December and January. Three sets of water table readings were taken, with the results as follows:

Groundwater Table Readings Riverview Neighbourhood 1-3, Wedgewood Creek Slope Assessment (Metres Below Ground Surface)							
	Surface Date Depth(days) Watertable Elev.					Elev.	
Testhole	Elev. (m)	Drilled	Initial	Second	Third	Elevation (m)	Date
2013-16	690.3	Nov. 8, 2013	9.05 (11)	9.17 (25)	9.13 (62)	681.3	Nov. 19
2013-17	689.3	Nov. 12, 2013	7.72 (7)	7.8 (21)	7.68 (58)	681.6	Jan. 4/14
2013-18	689.2	Nov. 13, 2013	16.0 (6)	11.8 (20)	8.98 (57)	680.2	Jan. 4/14
2013-19	689.1	Nov. 13, 2013	16.40 (6)	12.49 (20)	9.1 (57)	680.0	Jan. 4/14
2013-20	689.9	Nov. 13, 2013	4.82 (6)	4.85 (20)	4.92 (57)	685.1	Nov. 19
2013-21	689.1	Nov. 12, 2013	4.96 (7)	5.04 (21)	5.05 (58)	684.1	Nov. 19

8.0 AIR PHOTO REVIEW

Several sets of aerial photography covering the subject site and surrounding area were obtained from the City of Edmonton Mapping Department and the Alberta Sustainable Resource Development Library with the years of the photos attained as follows:

Year Viewed	<u>Scale</u>
1962	1:31,680
1974	1:12,000
1993	1:20,000
2001	1:20,000

Photos dated 2004 and 2012 were viewed on *Google Earth*. The photos were carefully reviewed for slope stability considerations and copies of selected photos are located in Appendix B.

All of the air photos showed the Wedgewood Creek area within the study boundary to remain the same shape. No signs of slope movement were observed in any of the photos. The viewed photos had no signs of toe erosion observed. The creek flow appeared slow in all the photos, likely due to the beaver dams evident in all of the photos.

9.0 SITE OBSERVATIONS

The south/east side of the Wedgewood Creek slope was visited by the writer over several days in the Fall of 2013 in order to observe the ground conditions and slope stability issues. The following observations and discussion are provided and it starts spatially at the west end of the project at 215 street and moves eastward to the end of the project at 199 Street. No snow cover was present during any of the site visits.

The Creek valley is filled in across 215 Street at the start of the project. The slope height is relatively small at approximately 8 meters and the slope angle is approximately 3H:1V or shallower. Vegetation cover is dense with grasses, bush, poplar and the odd spruce tree. The observed toe erosion was minimal and not a concern. A beaver dam was present in this area and several more dams were observed throughout the study scope. An old slump was observed which was approximately 25 meters wide. The slump was not recent as all of the vegetation cover was upright and unaffected by the slump.

At the start of the first tributary ravine east of 215 Street, a possible crack was observed near the top-of-bank. It appeared as a small depression in the ground. No signs of recent movement were observed on the slope in the depression area. The slope was steeper in this zone at approximately 2H:1V. An old scarp was observed in the southern portion of this first tributary. Similar to the other observed scarp, the vegetation was unaffected overtop the area.

The first tributary area was well vegetated and the ravine bottom was dry with slight erosion observed. Old slump blocks were observed in the south portion of the ravine.

The slope area east of the first tributary had no slope concerns observed and was well vegetated with slope angles of 3-5H:1V. The exceptions were two areas of toe erosion observed where the ground formed a peninsula out from the top-of-bank. Some bare ground was observed in these areas although the water was not adjacent to the slope at the time of our visit. Beaver dams in the area had virtually stopped the creek flow. The toe areas were vegetated below the bare soil. Toe erosion was deemed not to be concern for setback determination in these two areas due to the erosion location being away from the main slope.

The second tributary ravine was well vegetated with no concerns. At the junction of the tributary and the creek, erosion was observed approximately 0.6 meters deep at the ravine bottom. No flow of water was present during our visit.

East of the tributary the slope was well vegetated with no signs of toe erosion. An area of dense spruce trees was observed. Overall slope angles were approximately 3 to 5H:1V. Some hummocky areas were observed but were deemed not a concern for setback values. There was one area of a likely old large slump just south of the powerline crossing where the slope from the top-of-bank was steeper for a portion then became shallower. The top-of-bank area was circular shaped at this old slump. The slope movement appeared relatively old in age as the vegetation was unaffected by the slope and large spruce trees were present on the slope. No setback increase was deemed necessary for this old movement area.

The slope portion below the powerlines is technically outside the scope of this report however observations were made of the ground. The slope was void of any large trees except at the slope toe where large spruce were present, likely because the powerlines require the tree clearing to avoid contact. There was one concern observed which was an erosion gully located at the south end of the powerline ROW. Small slumps were observed in the gully. A shallow trough in the farmland was noted that lead up to the gully and likely supplied the run-off that caused the erosion. This erosion gully should not affect the adjacent slopes in the study boundaries provided the land development removes the trough that leads to the slope. This trough can be seen in air photos and starts from a low area adjacent to 199 Street.

As noted in the air photo section, the second tributary also has a shallow trough that leads to it and likely supplies run-off to the ravine. Land development design in this location should also reduce the flow to the tributary.

North of the powerlines, the slope continues to be well-vegetated and have angles of 3 to 7H:1V. Very slight toe erosion was observed in one area just north of the powerlines but was deemed not an issue. Some small slumps less than 1 meter high were observed at the slope toe but were also deemed not an issue. The trees for a portion of the slope carried over the top-of-bank onto the prairie surface away from the top-of-bank. The edge of the trees is not the top-of-bank for this slope portion. Some old slumping was observed at the top-of-bank in one area but it was small in nature and not deemed an issue. The vegetation was unaffected in the area and the overall slope remained at 3H:1V.

One area of old slope movement was observed near the north end of the study scope consisting of a 3-4 meter ridge, some bare soil, and fallen trees; all of which were in the bottom one-third of the slope. No toe erosion was observed in this area. An old dirt road was present in this area as well, the construction of which may have formed the observed ridges and caused some of the slope movement. No signs of recent movement were observed in the area.

10.0 GEOLOGY

The geology of the site starts with the deposition of the bedrock soils in shallow seas present during the Cretaceous period. Clayey sandstone, shale, and bentonitic mudstones were formed at the bottom of these seas and are termed the Horseshoe Canyon Formation (Khc) of the Edmonton Group. For the Wedgewood Creek site, bedrock was not encountered in the testholes as is therefore not a factor at this site.

Long after the bedrock formation, but before the ice age, a river flowed through the Edmonton area which also had several significant tributaries. Deep granular deposits termed Saskatchewan sands and gravels were formed in this river. This river was not the North Saskatchewan River as this flowed after the ice age came and went.

The next major geologic event was the several advances of large ice sheets across most of North America. These large ice sheets plowed along the bedrock, then deposited a mixture of clay, silt and sand during their retreat, termed glacial clay till. A large lake formed over much of Edmonton near the end of the ice retreat. This lake deposited clay and silt soils, termed Lake Edmonton deposits. Aeolian deposits are present north of the site but no such soils were encountered in the site testholes.

The North Saskatchewan River flowed through central Edmonton after the glaciers retreated and Lake Edmonton had emptied, initially downcutting its valley into the lacustrine clays and glacial clay tills. Approximately 6500 years ago, the River bottom hit the harder bedrock soils and started migrating laterally. It was during the down cutting of the River that its tributaries formed downcutting their own valleys. Wedgewood Creek is one of these tributaries to the North Saskatchewan River.

The clay and silt encountered in the testholes are considered Lake Edmonton deposits while the clay till encountered below is considered a glacial deposit.

11.0 SOILS DESIGN PARAMETERS AND COMPUTER ANALYSIS

For slope stability modeling using GSlope software, the soil properties including unit weights and effective strength parameters were required. These values as summarized below were determined from evaluation of the field and laboratory data outlined in this geotechnical report and our experience in the Edmonton area.

Soil Type	Unit Weight (kN/m³)	Effective Cohesion (kPa)	Effective Angle of Friction
	γ	(c')	(\phi')
Clay or Silt	19	0	23-25
Clay Till	20	5	30

The groundwater table for the slope analysis was raised 4 meters from the recorded values to estimate the possible long-term rise in the watertable due to residential development. For seasonal fluctuation consideration, another 0.6 meters was added to the recorded values. It is noted that this long-term developmental watertable rise was limited to a maximum 2.0 meters below the existing ground surface as house basement weeping tile groundwater collection should prevent the watertable from rising higher.

It is noted that the effective cohesion value of the clay till is relatively low however the stability analysis showed a higher cohesion value in the till does not raise the slope factor-of safety (FOS). Raising the effective cohesion till value does not affect the setback analysis.

GSlope slope stability software and Bishop's Modified Method were utilized to obtain theoretical (FOSs) for the slope sections surveyed onsite. The point of interception of the ground surface with the 1.5 FOS and the 1.3 FOS were obtained for each section. Circular slip surfaces were deemed appropriate for the computer analysis and translational failure surface were not deemed necessary. Drawings showing the GSlope analysis along with the slope profiles are located in Appendix C.

The slope profiles utilized in the GSlope computer analysis were produced at locations chosen by Hoggan from the LIDAR plans of the site supplied by Stantec. The profile locations were selected as representative of the various portions of the overall slope profiles. A

surveyed/geo-referenced top-of-bank line was also forwarded to our office by Stantec and was stated to be the official top-of-bank line as defined in the City of Edmonton top-of-bank Policy C542. The LIDAR data is located in Appendix B and profile locations are shown on a drawing located in Appendix C.

12.0 SLOPE DISCUSSION AND RECOMMENDATIONS

In general, the purpose of this slope stability assessment is to provide recommended setback distances from the top-of-bank so that for the 150 year design period, any future slope movement will not affect the development on the prairie surface. The juxtaposition is also important in that setting development away from the top-of-bank helps reduce the human impact on slope stability. This human impact is well documented in reviewed literature by others. Recommendations are provided later in this report that will help limit the impact of development on the slope. Land development in the City of Edmonton is guided by the Top-of-bank Policy C542 (2010) which should be followed for this project.

Setback distances were determined for this project based on all of assessment data, observations, and computer stability analysis. Engineering judgement was also used in establishing these distances and they are shown in the following table:

Recommended Setback Distances (m) Wedgewood Creek							
Cross Section Property Line/Road Setback Building Setback SwMF and Water Features							
7C	20	25	75				
8C	20	25	75				
9C	10	15	50				
10C	10	15	50				

The above recommended setbacks are shown on site plans in Appendix C. The setback distances should be measured from the established top-of-bank survey line as prepared by Stantec Consulting Ltd. Thus the setbacks can be geo-referenced from this recorded survey line.

It is noted that Hoggan modified this line in some areas to make it straighter and easier to measure the setbacks from. This modification always moved farther away from the Stantec top-of-bank line.

Based on our site observations and the Golder Erosion Study, the slope setbacks at this site do not require any allowance for future toe erosion.

It is considered general practice to setback buildings to a FOS of 1.5 or greater and roads to a FOS of 1.3 or greater, and this is also the City of Edmonton Top-of-Bank Policy (C542). Unoccupied structures such as decks and gazebos are considered acceptable to adhere to the UDL setback with care taken not to rigidly attach these structures to any buildings.

The protection of private property and public walkways in the City of Edmonton is not so universally accepted as buildings and roads. The developer, City of Edmonton, and future lot owners all have different perspectives on the acceptable risk for these items. It is understood that FOS of 1.3 is assigned to private property in the City of Edmonton top-of-bank policy. Hoggan has followed these items in our analysis and has provided a second line on our drawings showing the urban development line (UDL) which is another name for the road and property setback line.

The current City of Edmonton Policy states that a minimum 10 meter setback from the top-of-bank is required for property lines and roads for all new development. It is understood that the City of Edmonton Policy allows walkways within the area of the Top-of-bank and the development setback. Hoggan sees no site specific stability reasons not to follow this walkway policy.

The current City of Edmonton Policy states that in slope areas of higher geotechnical risk, a top-of-bank road should be the predominant development type. In our opinion, none of the slopes in this study are a high enough risk for this policy item to apply.

The following design and construction recommendations are very important to help maintain the stability of the slope and limit the human impacts upon the river bank.

Park walkways should not concentrate surface water run-off at any locations on the topof-bank. Asphaltic concrete walkway surfacing is acceptable for this site. Disturbance to the existing vegetation should be minimized and the vegetation replaced where disturbance occurs outside the path area. Walkways should be set as near to the development setback line as possible. Hoggan should review walkway locations prior to final design. All structures adjacent to the top-of-bank setbacks should have weeping tile and roof leaders connected to the storm sewer. Lot grading should direct water away from the ravine where possible. Split drainage of the top-of-bank lots is acceptable. No water should be allowed to collect or concentrate, and drain over the top-of-bank. A small amount of diffuse surface lot drainage is acceptable. Any surface erosion should be immediately corrected and vegetation started to prevent further erosion.

No fills or other loads should be placed within the top-of-bank and property line or road. Fills on top-of-bank lots should be limited to 0.5 meters. Fills of greater depths should be further analysed by Hoggan for the effect on slope stability. No over bank dumping should be allowed. Slope below the top-of-bank should not be disturbed, unless properly engineered and maintained for features like public stairs or walkways for ravine access.

It is good practice for top-of-bank development that sources of water should be eliminated or minimized. Lawns should not be over watered and significant vegetation free areas should not be utilized. Swimming pools, ornamental ponds, and other bodies of water are not recommended within 50-75 meters of the top-of-bank. In addition, no underground automatic watering should be permitted within 50-75 metres of the top-of-bank as leaks in these pipes can go unnoticed for a long time. Stormwater management facilities are not recommended within 50-75 meters of the top-of-bank unless further analysis is performed. These water feature setbacks are shown on the drawings in Appendix C.

All underground utility lines, especially waterlines and hydrants, near the top-of-bank should be carefully constructed to help prevent leaks. The standard exfiltration rates from well-constructed sewers should not affect the stability of the subject slopes provided the setbacks are maintained.

13.0 CLOSURE

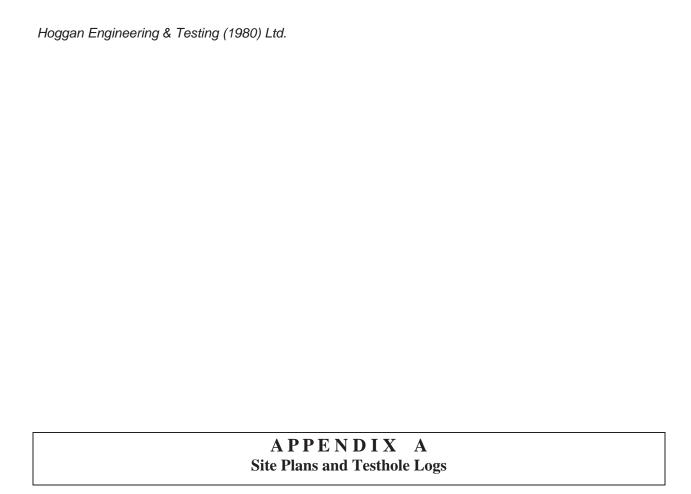
This report has been prepared for the exclusive and confidential use of Qualico Developments West Ltd., Walton Development and Management LP, City of Edmonton, MMM Group, Stantec Consulting Ltd., and their authorized agents. Use of this report is limited to the subject Wedgewood Creek site only. The recommendations given are based on the subsurface soil conditions encountered during test boring, current construction techniques and generally accepted

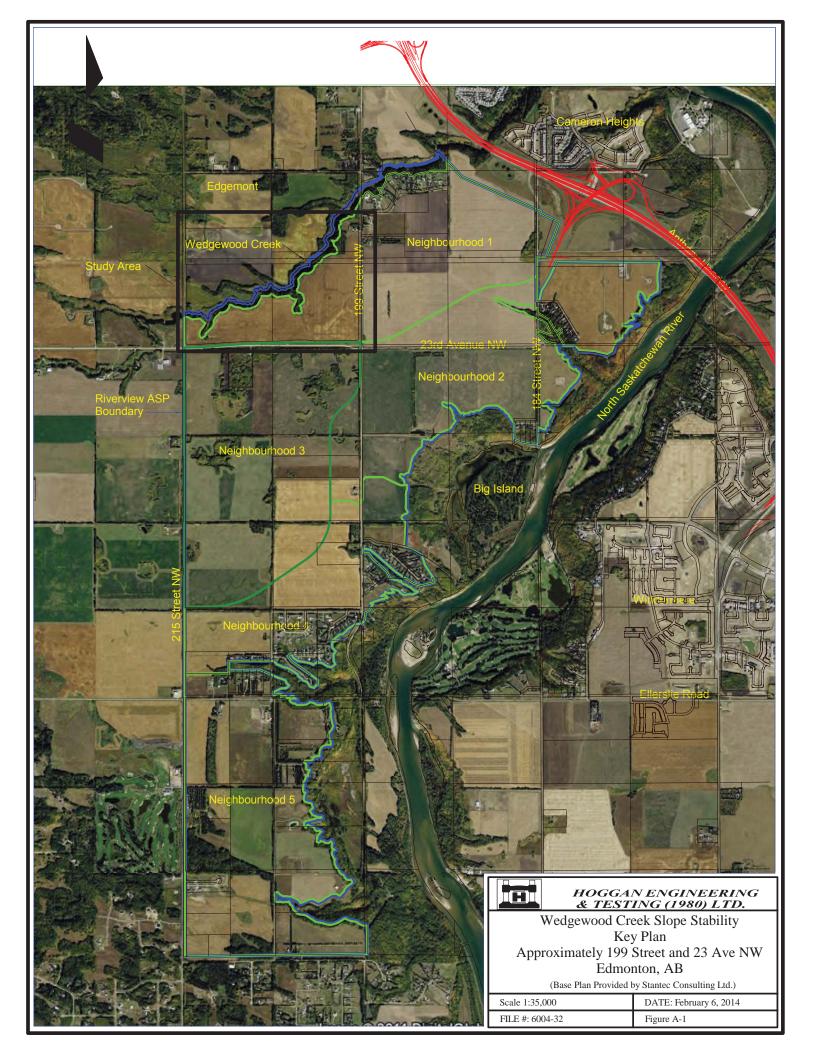
engineering practices. No other warranty, expressed or implied, is made. Due to geological randomness of many soils formations, no interpolation of soil conditions between or away from the testholes has been made or implied. Soil conditions are known only at the test boring location. Should other soils be encountered during construction or other information pertinent becomes available, the undersigned should be contacted as the recommendations may be altered or modified.

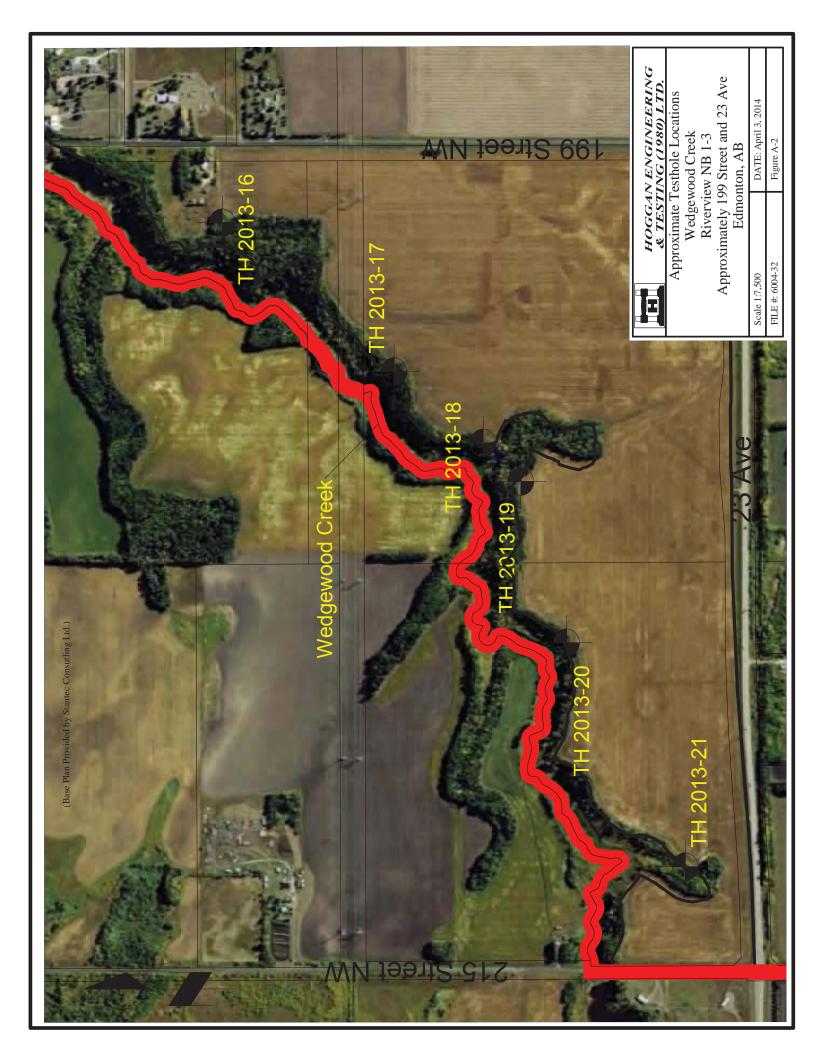
With regards to the slope stability assessment conducted for the subject property, the Owner(s) should be aware that our analysis has endeavoured to describe the risk of developing at this site, and limit the risk with engineering analysis. The risk can only be limited and not eliminated, therefore slope movement risk must be accepted by all current and future landowners.

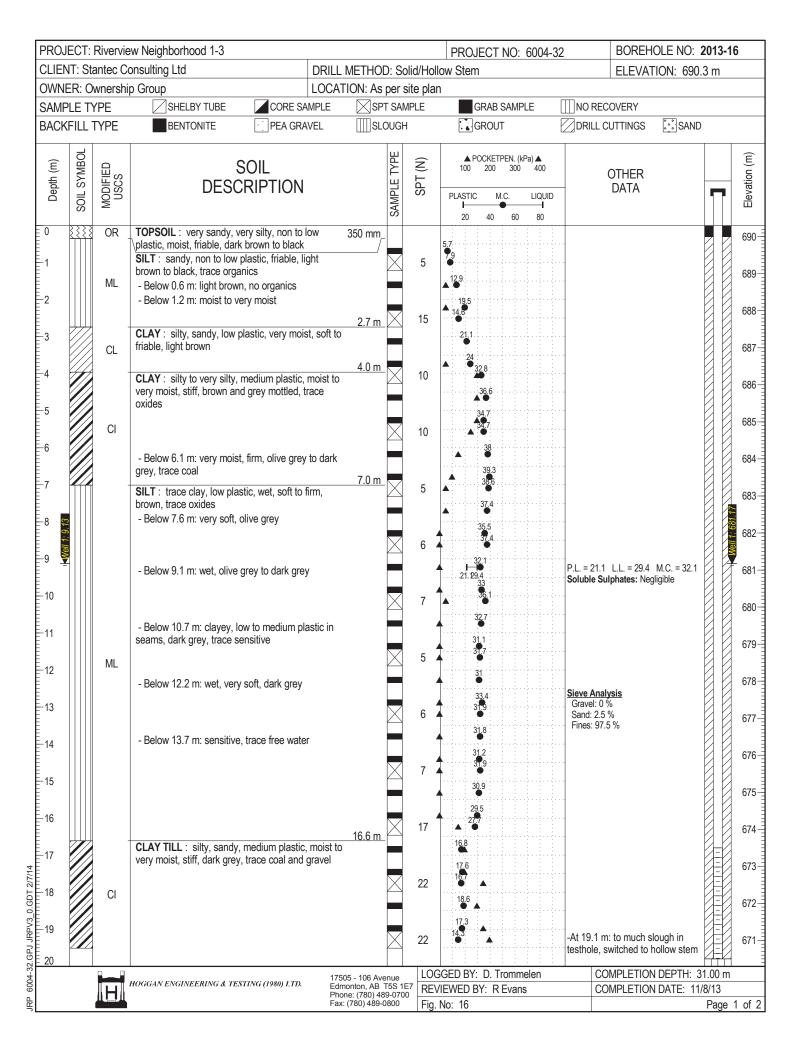
We trust this information is satisfactory. If you should have any questions, please contact our office.

Yours truly, HOGGAN ENGINEERING & TESTING (1980) LTD.

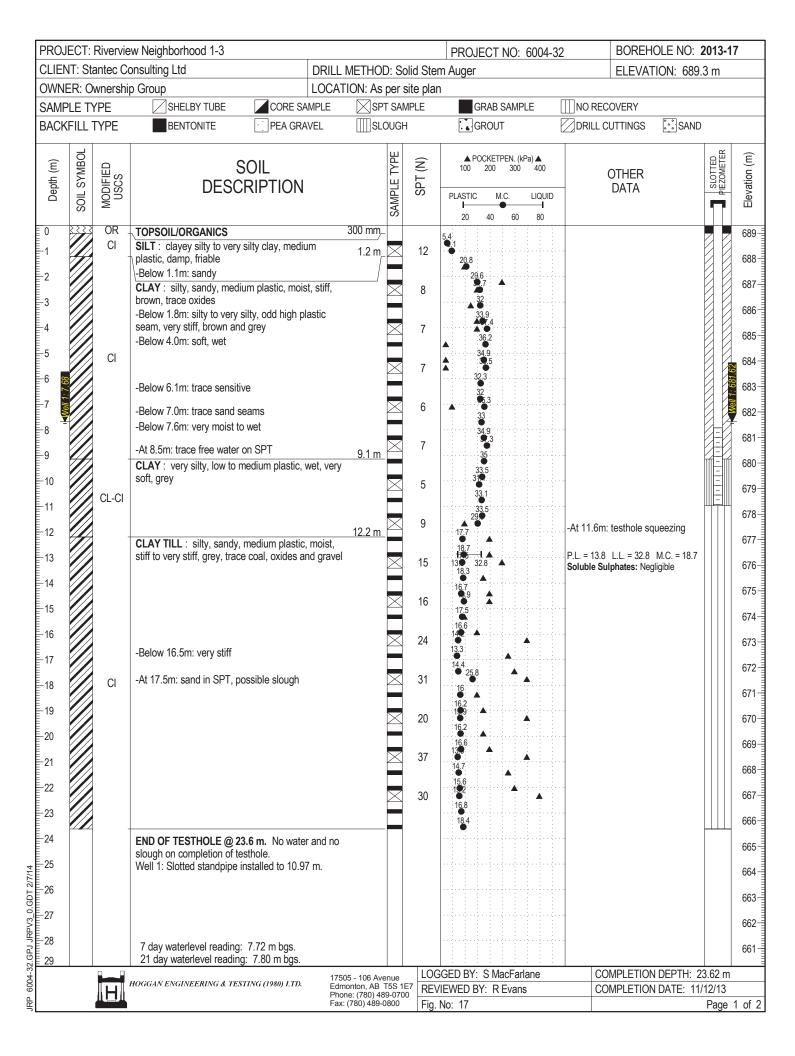

8 4 14


Rick Evans, P. Eng. Manager, Geotechnical Engineering

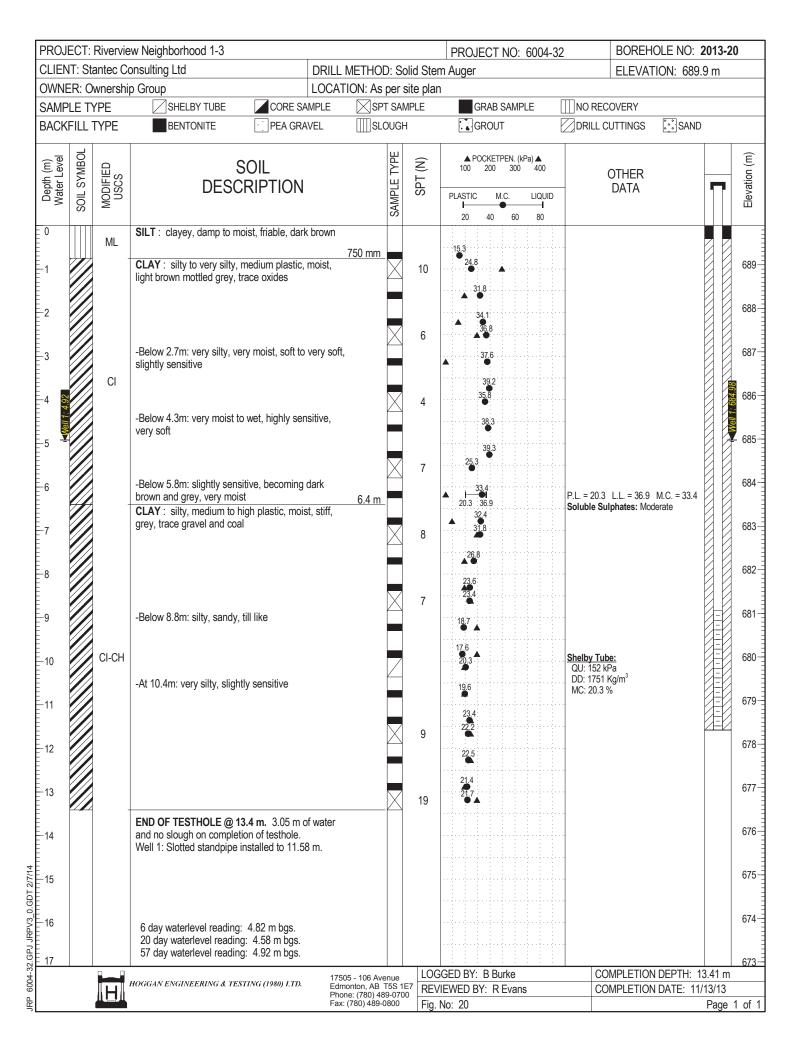

Reviewed by, Abe Rahime, P. Eng.

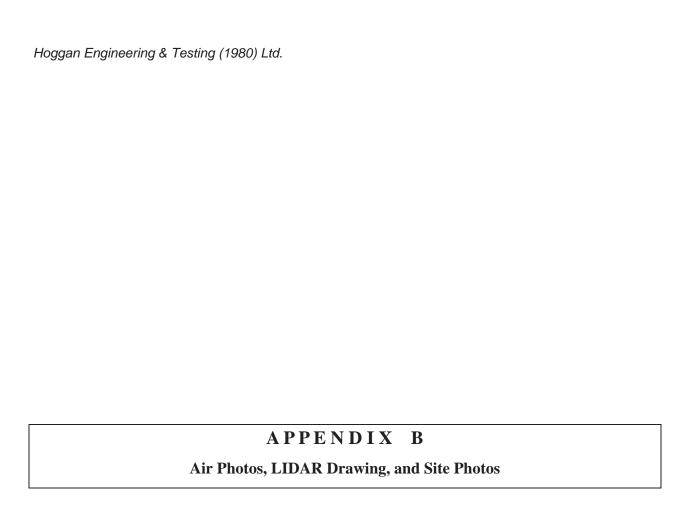

APEGA Permit to Practice #P3691

H:\DATA 2014\6004 Stantee\6004-32(Curr) Slope Riverview NB1-3\Report\hr1113sta.doex

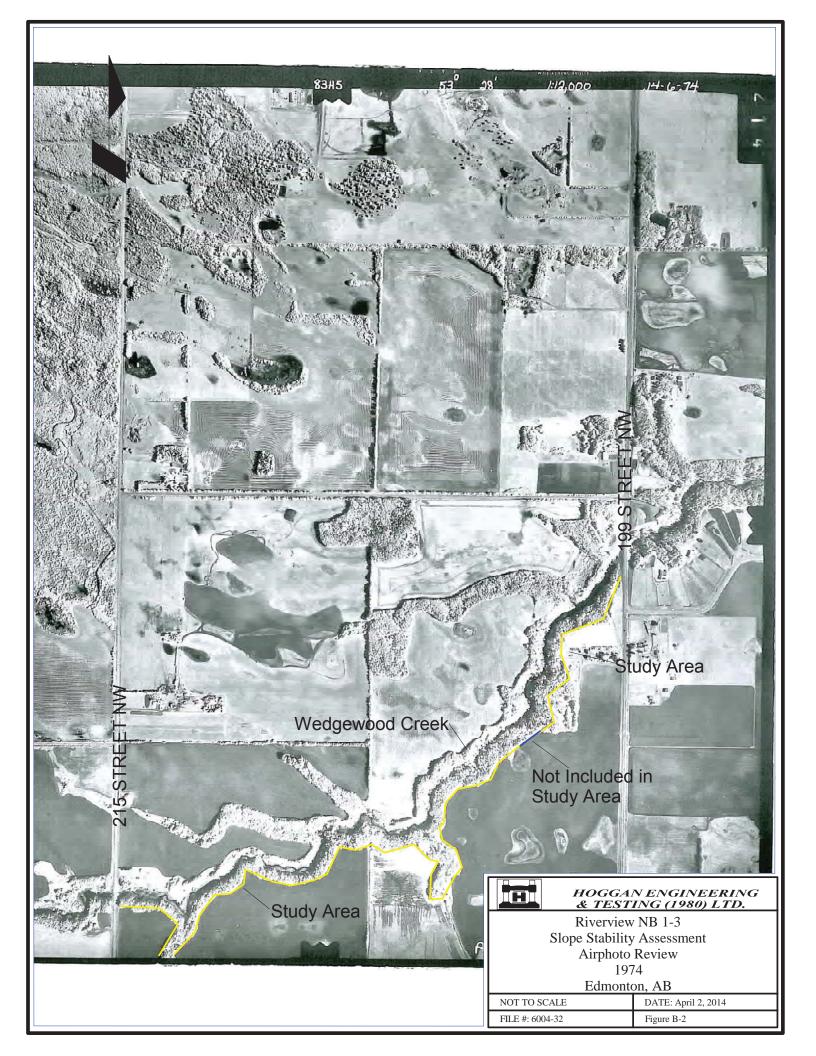


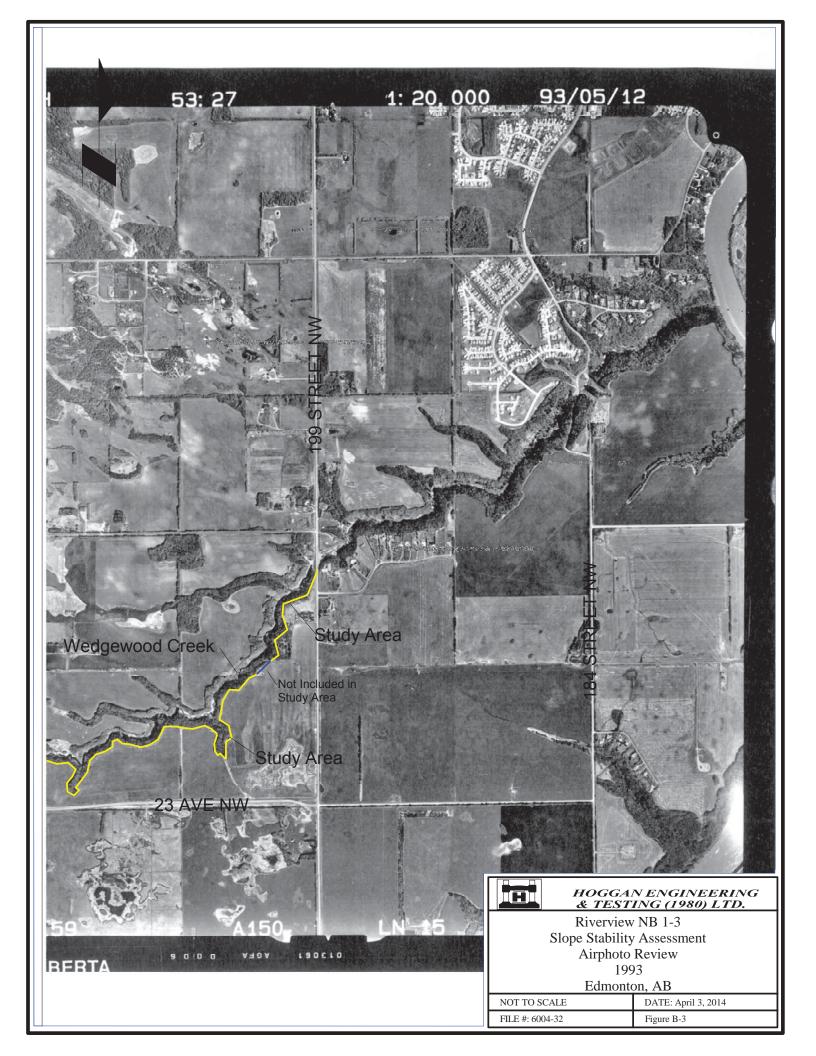
PROJECT: Riverview Neighbor			PROJECT NO: 6004-32 BOREHOLE NO: 2013-			
CLIENT: Stantec Consulting Lt	d	DRILL METHOD:		v Stem	ELEVAT	TON: 690.3 m
OWNER: Ownership Group	TIDY TUDE	LOCATION: As p	<u> </u>		TTNO DECOVEDY	
	ELBY TUBE CORE SANTONITE PEA GRA		SAMPLE	GRAB SAMPLE GROUT	NO RECOVERY DRILL CUTTINGS	SAND
BACKFILL TYPE BEI	NTONITE PEA GRA	VEL SLOC	UGH	GROUT	DRILL CUTTINGS	SAND
SOIL SYMBOL MODIFIED USCS	SOIL DESCRIPTION		SAMPLE TYPE SPT (N)	PLASTIC M.C. LIQUID 20 40 60 80	OTHER DATA	SLOTTED PIEZOMETER Elevation (m)
21 CI -At 20.6m: moist, stiff,	silty, sandy, medium plastic, mo dark grey, trace coal and grave	pist to very	17	15.8		670-
- At 22.0 m tip	n: hard drilling, possible rock ne	ar auger -	50@ 3"			668
	n: moist, very stiff, dark grey, tra	ace coal	32 .	153		667
-At 25.2m:	no recovery		21 .			665
gravel	moist, very stiff, dark grey, trace	e coal and	21 .	154		664-
CI -At 28.2 m	hard, trace coal and bedrock p	pieces	41	14.1		662
	hard drilling, poor recovery in S	PT	50@ 1"	10.6		661
11.2 m of s	ESTHOLE @ 31.0 m. No water lough on completion of testhole ted standpipe installed to 19.8).				659
33						658
25 day wa	terlevel reading: 9.05 m bgs. terlevel reading: 9.17 m bgs. terlevel reading: 9.13 m bgs.					656
= 35	terieverreading. 9.13 m bgs.					655
37						654 -
39 40						652
HOGGAN ENG	INEERING & TESTING (1980) LTD.	17505 - 106 Aven Edmonton, AB T5	uc	ED BY: D. Trommelen		DEPTH: 31.00 m
Phon		Phone: (780) 489- Fax: (780) 489-08	-0700	WED BY: R Evans	COMPLETION	DATE: 11/8/13 Page 2 of 2

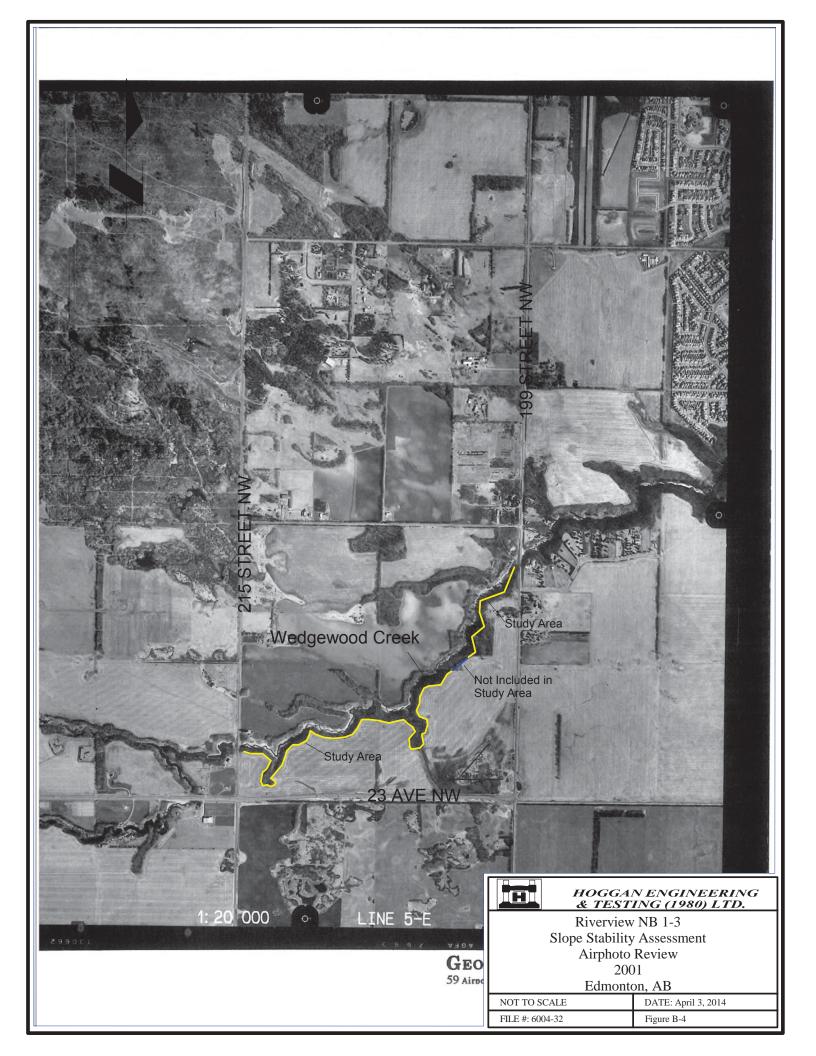

JRP 6004-32.GPJ JRPV3_0.GDT 2/7/14

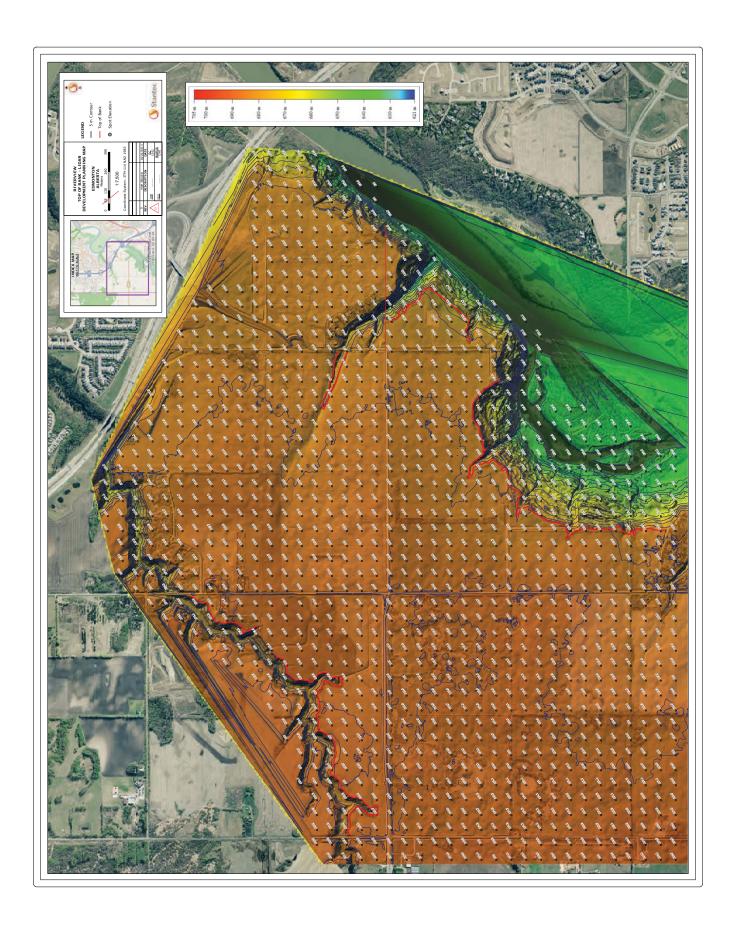

		w Neighborhood 1-3					PROJECT NO: 6004-3	2	BOREHOLE NO:		8
		onsulting Ltd		LL METHOD			n Auger		ELEVATION: 689.	2 m	
OWNER: C		SHELBY TUBE	CORE SAMPLE	ATION: As p SPT			GRAB SAMPLE	∏NO R	ECOVERY		
BACKFILL		BENTONITE	PEA GRAVEL	SLO		· <u> </u>			L CUTTINGS SAND		
Depth (m) SOIL SYMBOL	MODIFIED USCS		SOIL CRIPTION		SAMPLE TYPE	(N)	▲ POCKETPEN. (kPa) ▲ 100 200 300 400 PLASTIC M.C. LIQUID		OTHER DATA	7	Elevation (m)
1 1 2 2 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	OW ML CI-CH	SILT: very sandy, clayey moist, friable, dark brown -At 0.9m: approximately 1 high plastic clay lens, grey CLAY: very silty, mediur stiff, light brown, some grey-Below 2.4m: very moist, sellow 5.8m: very moist to brown, slightly sensitive CLAY: silty, sandy, med firm to stiff, trace coal, oxides an electron oxides and stiff, trace coal, oxides and	00mm thick medium to y n plastic, moist, firm to ey regions soft to firm, trace oxide o wet, very soft, dark ium to high plastic, moides and gravel, till like ery moist, slightly sensi	s 1.1 m ss ss stive		111 7 7 9 7 114 110 112	20 40 60 80 10.3 17.2 29.7 32.1 28.9 30.8 30.8 30.8 28.1 32.5 27.1 26 36.5 29.2 30.1 30.5 28.9 16.8 ₂ 6.5 46 31.8 21.4		6.8 L.L. = 46.0 M.C. = 28.9 Sulphates : Negligible		689— 688— 686— 686— 685— 683— 683— 683— 683— 683— 683— 683—
13 14 15 16 16 17 18 19 20 21 22 23	CI	-At 14.5m: free water note -At 14.5m: free water note END OF TESTHOLE @ 1 slough on completion of te Well 1: Slotted standpipe 6 day waterlevel reading 20 day waterlevel readin 57 day waterlevel readin	8.0 m. No water and resthole. installed to 17.98 m. 16.00 m bgs. g: 11.80 m bgs. g: 8.98 m bgs.			16 14 15 16 16 16 16 16 16 16	18.2 17.9 17.1 13.8, 32.5 16.7 16.2 19.1	Soluble	3.6 L.L. = 32.5 M.C. = 17.1 Sulphates: Negligible	7 98 m	676— 675— 674— 673— 672— 671— 669— 668—
		HOGGAN ENGINEERING & TES	<i>STING (1980) LTD</i> . E	17505 - 106 Aver Edmonton, AB T Phone: (780) 489 Fax: (780) 489-0	5S 1E7 9-0700	REVI	EWED BY: R Evans lo: 18		COMPLETION DATE: 11	13/13	1 of 1

JRP 6004-32.GPJ JRPV3_0.GDT 2/7/14


PROJE	ECT: I	Rivervie	w Neighborhood 1-3				PROJECT NO: 6004-	32	BOREHOLE NO:	2013-	19
			onsulting Ltd		LL METHOD: Sol				ELEVATION: 689	1 m	
			p Group		ATION: As per si						
SAMPL			SHELBY TUBE	CORE SAMPLE		PLE	GRAB SAMPLE		RECOVERY		
BACKF	-ILL 1	TYPE	BENTONITE	PEA GRAVEL	SLOUGH		GROUT	DRIL	L CUTTINGS SAND		
Depth (m) Water Level	SOIL SYMBOL	MODIFIED USCS		OIL RIPTION	SAMPLE TYPE	SPT (N)	PLASTIC M.C. LIQUID 20 40 60 80		OTHER DATA	SLOTTED PIEZOMETER	Elevation (m)
10 11 12 13 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19		CI-CH CH SA CH CI	SILT: sandy, low to mediumoist, friable, brown CLAY: silty, sandy, mediut to moist, very stiff, light bro-Below 1.4m: very silty, mo -Below 4.3m: very silty clay -Below 5.2m: very moist, slands - At 5.6m: high plastic seam -Below 6.4m: very soft, dar -Below 7.6m: transition to brown transition transition transition to brown transition transition transition to brown transition	im to high plastic, danger with the plastic danger with the plastic day, less and the plastic day, less and the plastic day, less are plastic day, moist, stiff, dark brown are plastic day, moist to very moist, are plastic day, coarse grained, and gravel and gravel are, coarse to medium et, grey, trace gravel	silt 8.5 m 10.8 m 11.9 m 12.2 m	10 7 9 11 7 10 11 20 15 20	11.2 23.6 29 31.8 22.3 33.4 29.5 27.	P.L. = 2 Soluble	0.3 L.L. = 53.8 M.C. = 31.8 Sulphates: Negligible		688- 686- 686- 686- 688- 688- 688- 688-
22 -22 -23 -23 -24 -25			end of testhole @ 19 and 12.65 m of slough on a Well 1: Slotted standpipe in 6 day waterlevel reading: 20 day waterlevel reading 57 day waterlevel reading	completion of testhole istalled to 17.68 m. 16.40 m bgs. 12.49 m bgs.							669 668 667 666 665
25				-		1.01	055 87 85 1		OOMBLETION SECTION	0.54	
			HOGGAN ENGINEERING & TEST	TNG (1980) LTD.	17505 - 106 Avenue Edmonton, AB T5S 1E	7 REV	GGED BY: B Burke /IEWED BY: R Evans		COMPLETION DEPTH: 1 COMPLETION DATE: 11		1
		MHIII		F	Phone: (780) 489-0700 Fax: (780) 489-0800	IVL	No: 19		COM LETION DATE. 11.		1 of 1




			w Neighborhood 1-3				OJECT NO: 6004-32	BOREHOLE NO: 2013-2	<u>21</u>
			onsulting Ltd	DRILL METHOD: Sol			ger	ELEVATION: 689.1 m	
			p Group	LOCATION: As per si		an <u> </u>			
SAMF	PLE TY	/PE	SHELBY TUBE COR	E SAMPLE SPT SAM	PLE		GRAB SAMPLE NO	RECOVERY	
Depth (m)	SOIL SYMBOL	MODIFIED USCS	SOIL DESCRIPT	ION	SAMPLE TYPE	SPT (N)	PLASTIC M.C. LIQUID 20 40 60 80	OTHER DATA	:
0	777	OR -	TOPSOIL/ORGANICS	200 mm_			00.7		
-1 -2		CI-CH -	CLAY: silty, medium to high plastic, seams, brown and grey CLAY: very silty, medium plastic, stif grey high plastic seams, firm to stiff wi	f, dark brown, odd		11	277 A		(
-3		CI-CH			X	8	18.7 36.9 52.3 37.4	P.L. = 18.7 L.L. = 52.3 M.C. = 30.3 Soluble Sulphates: Negligible	
ب 4 ب			Below 3.0 m: increased moisture, soft	·	\times	5	40.9 39.8		11: 684.05
5		CH	CLAY: silty, high plastic, stiff, grey	4.6 m			34./		Me
6			CLAY: very silty, very moist to wet, s grey, sensitive	5.3 m oft, medium plastic,		5	30.9	_	Ī
7						2	32.5 \$3.3		
8		CI	At 7.9 m: high plastic clay seam		\times	7	45.7 35.6		
9						7	35.5 40.5 30.8		
11			Below 10.7 m: very sensitive			,	31.1 31.6 \$5.5		
12		-	NOTE: drilled past 11.9 metre to find m	11.9 m till. No till to 17.5		8	5 0		
13									
·14 ·15									
16									
17		-							
18			end of testhole @ 17.5 m. No von completion of testhole.	vater and no slough					
19 20									
21			7 day waterlevel reading: 4.96 m bg	S.					
22			21 day waterlevel reading: 5.04 m by 58 day waterlevel reading: 5.05 m by	gs. gs.					
23		_ n			10	GGED	BY: S MacFarlane	COMPLETION DEPTH: 17.53 m	\perp
			HOGGAN ENGINEERING & TESTING (1980) L	Editionion, AB 100 1E	_		D BY: R Evans	COMPLETION DATE: 11/12/13	
				Phone: (780) 489-0700 Fax: (780) 489-0800	_	. No: 2		Page	1



Hoggan Engineering and Testing (1980) Ltd.

Photo #1 - West end, 215 Street in background

Photo #2 - West end, toe area and beaver dam

Photo #3 – West end, typical vegetation cover

Photo #4 - West end, toe area and creek

Hoggan Engineering and Testing (1980) Ltd.

Photo #5 - West end, beaver activity on slope

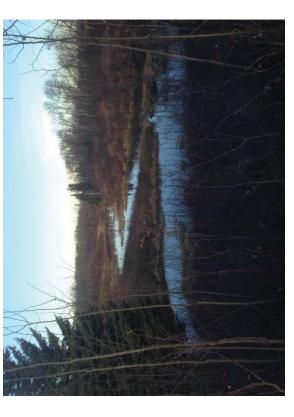


Photo #6 - West end, creek area

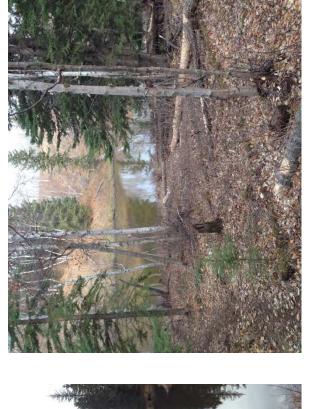


Photo #8 - Middle of site, toe area

Photo #7 - Middle of site, toe area, shallow slope

Hoggan Engineering and Testing (1980) Ltd.

Photo #9 - East end, disturbed area

Photo #10 - East end, 199 Street berm

Photo #11 - East end, vegetation cover typcial

Photo #12 - East end, toe area and beaver dam

Hoggan Engineering and Testing (1980) Ltd.

Photo #13 - Middle of site, toe area

Photo #14 - Middle of site, creek area, looking upstream

Photo #15 – Middle of site , toe area

Photo #16 - East end, creek area

Hoggan Engineering and Testing (1980) Ltd.

Photo #17 - Middle of site, toe area

Photo #18 - Middle of site, toe area

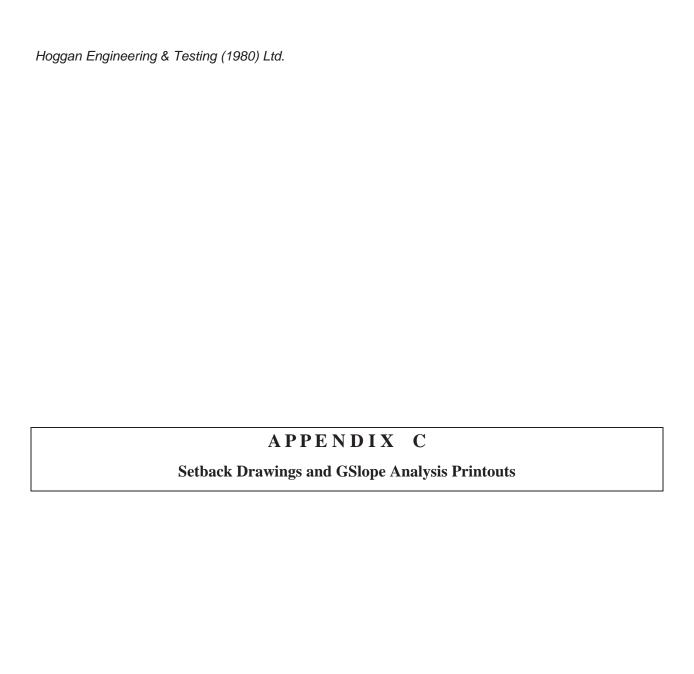


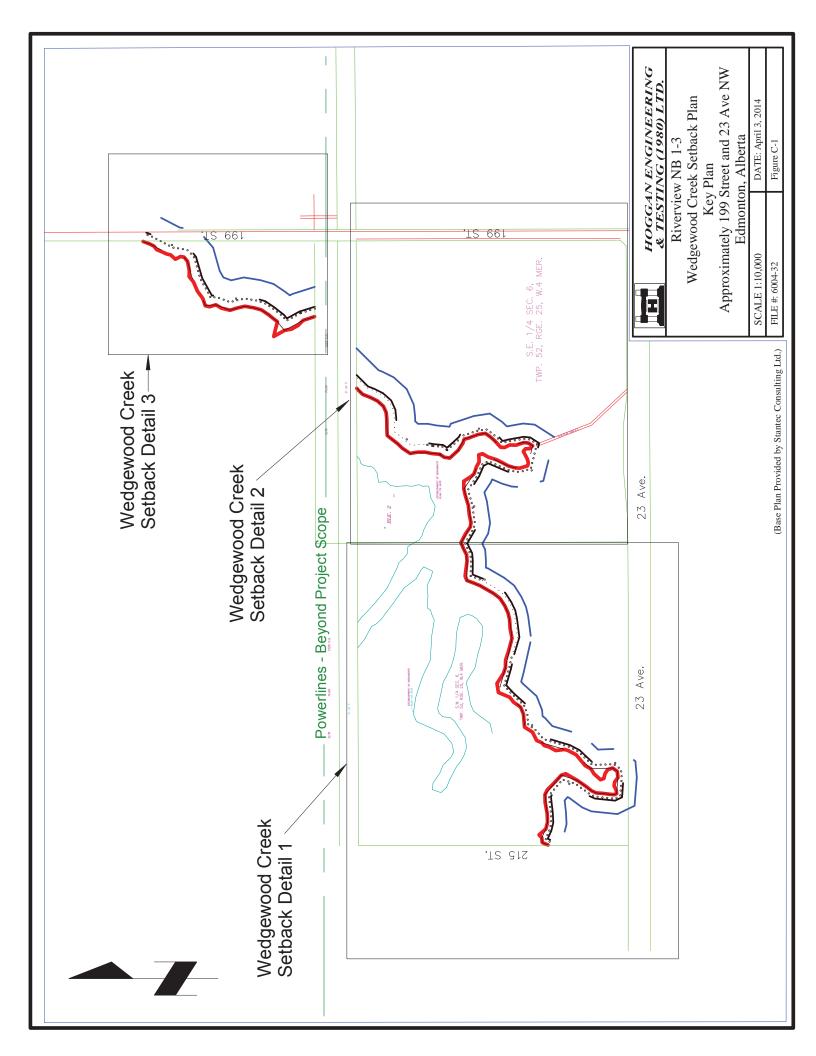
Photo #20 - Middle of site, overall slope

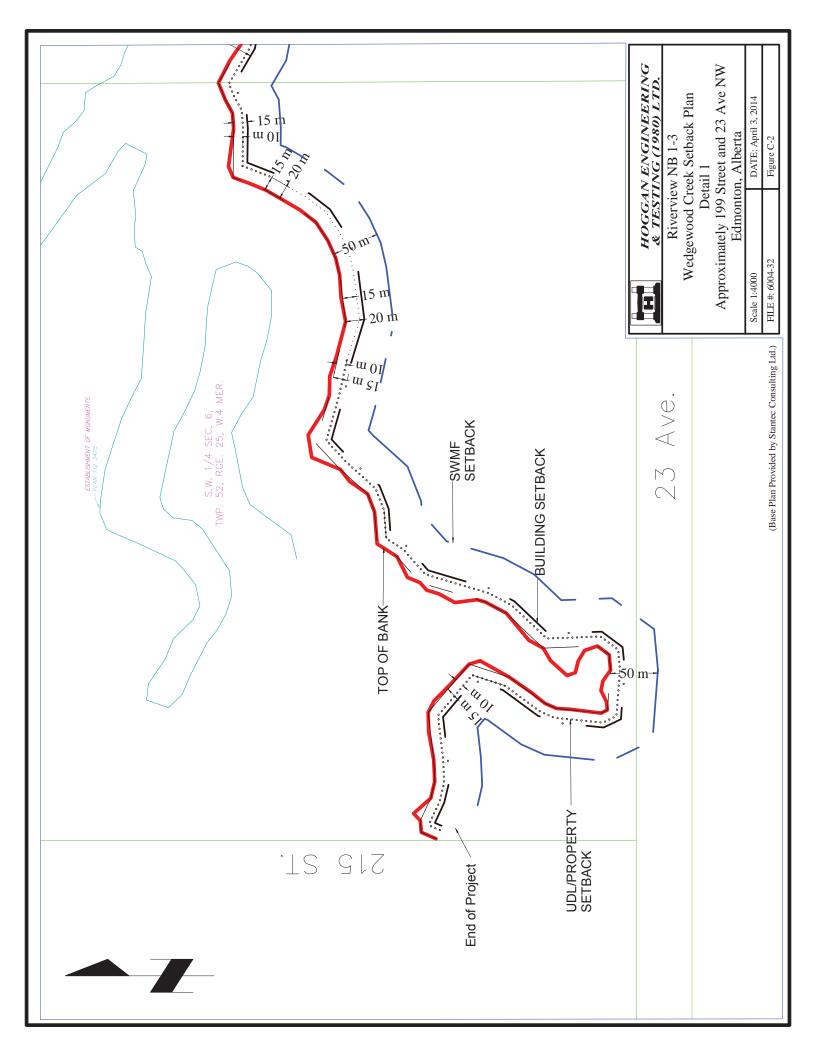
Photo #19 - Tributary, erosion near outlet to creek

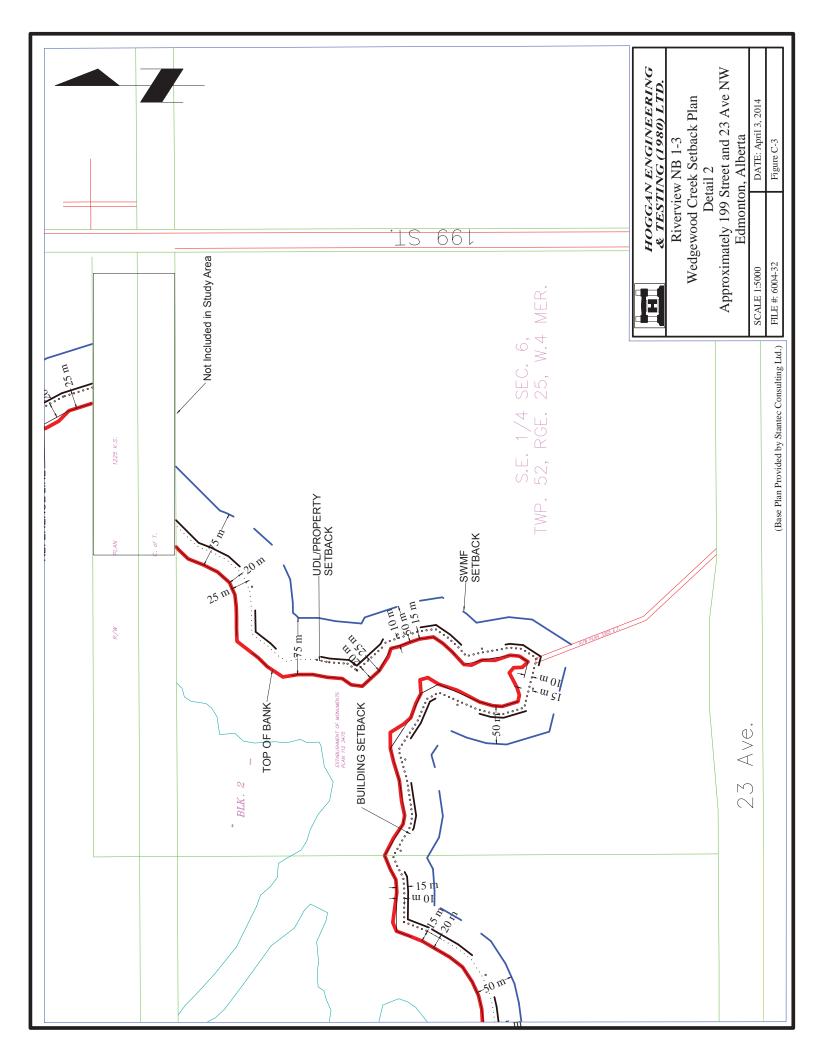
Hoggan Engineering and Testing (1980) Ltd.

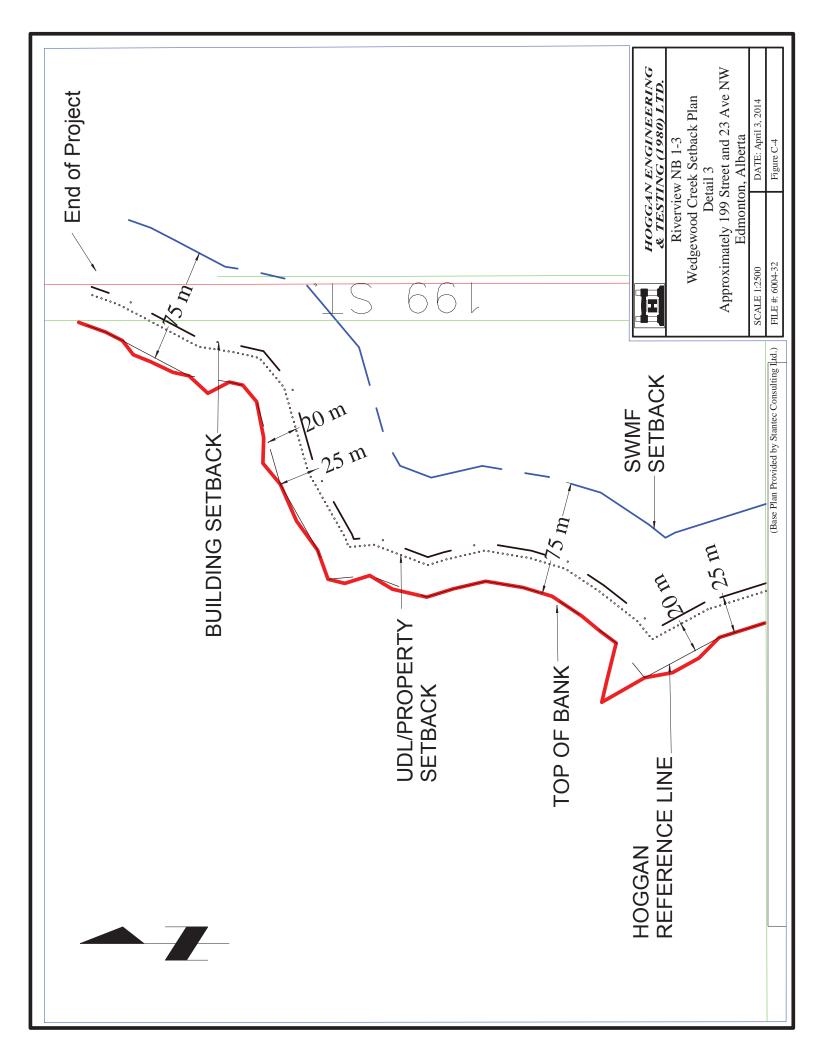
Photo #21 - Middle of site, top-of-bank area, typical

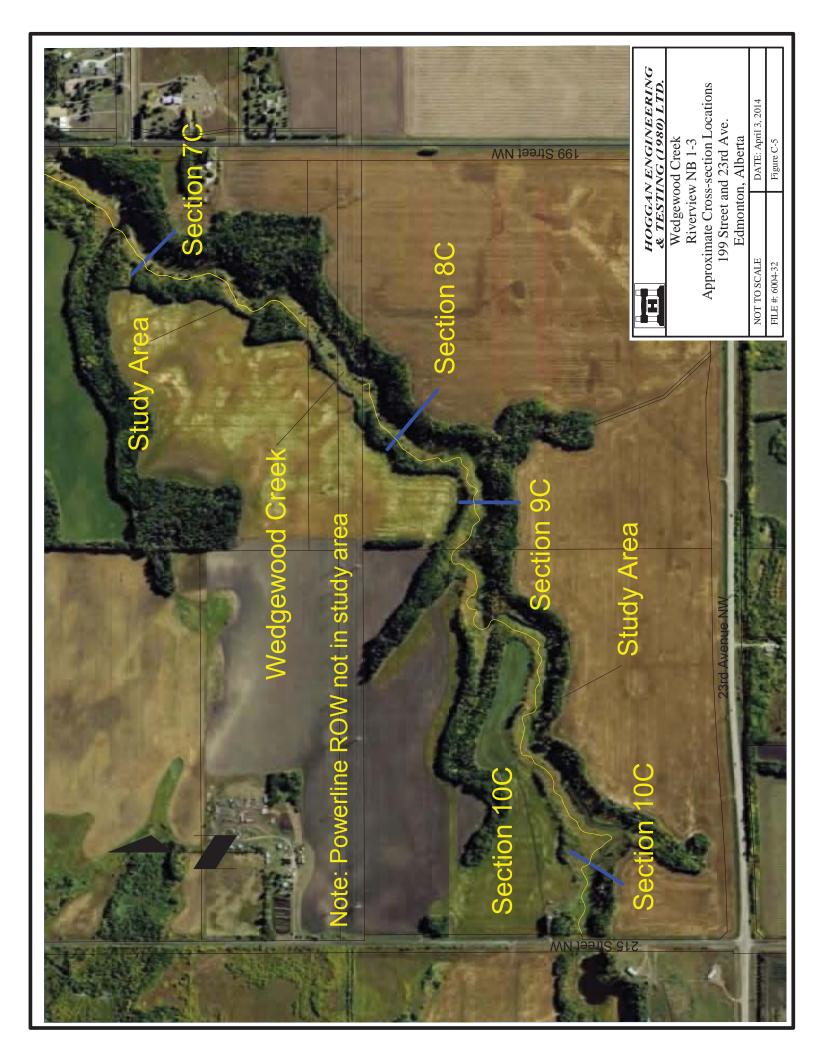



Photo #22 - Middle of site, top-of-bank area typical




Photo #24 - Powerline area, offsite Photo # 23 - Old movement area, south powerlines, upper slope

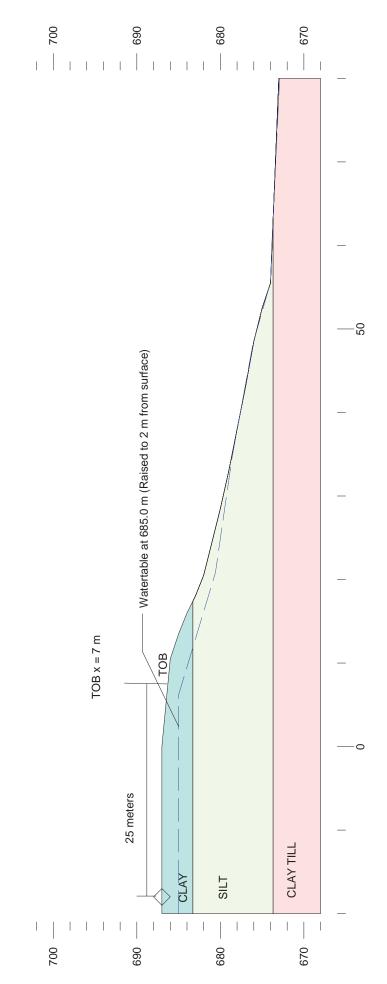

Slope Stability Assessment – Wedgewood Creek



Hoggan Engineering & Testing Ltd.
6004-32
Riverview Neighborhoods 1-3
December 2013
Section 7C
Wedgewood Creek

Piezo

Surf.


Gamma C kN/m3 kPa

Phi deg 25 23 23 30

0 0 2

19 19 20

Clay Silt Clay Till

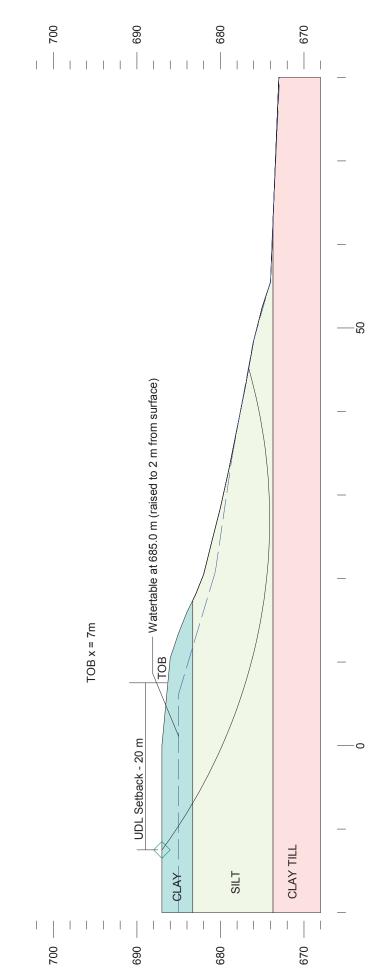
Piezo

Gamma C kN/m3 kPa

Surf.

-

0 0 0

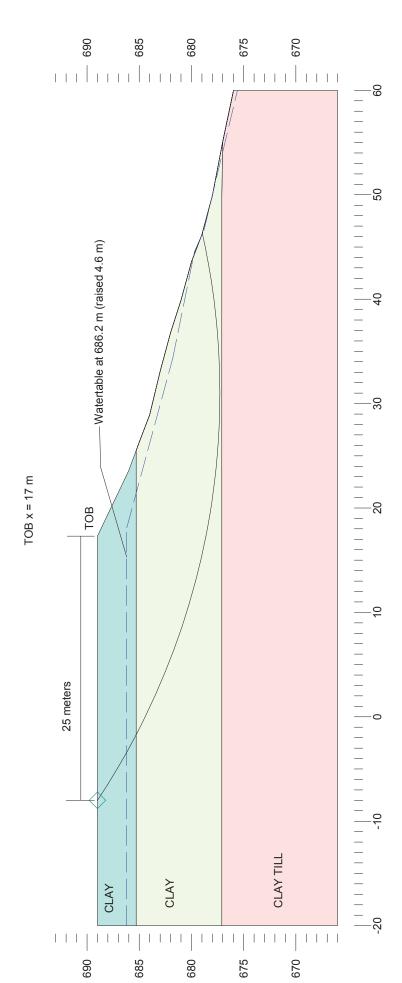

Phi deg 25 23 23 30

19 20 20

Clay Silt Clay Till

December 2013 Section 7C Wedgewood Creek

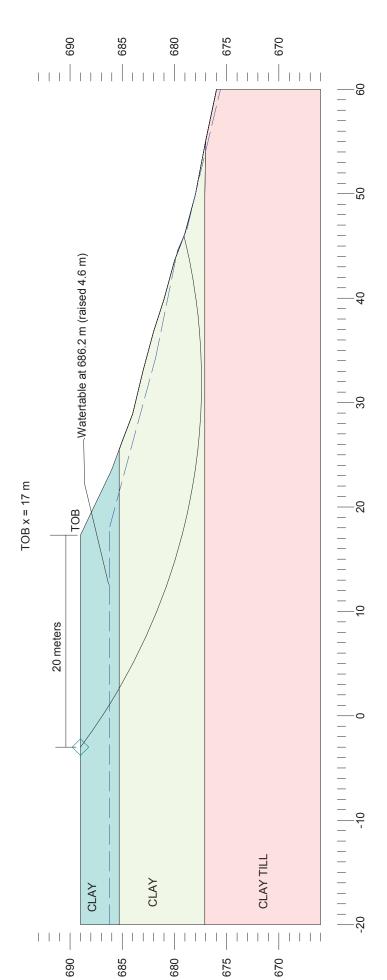
6004-32 Riverview Neighborhoods 1-3

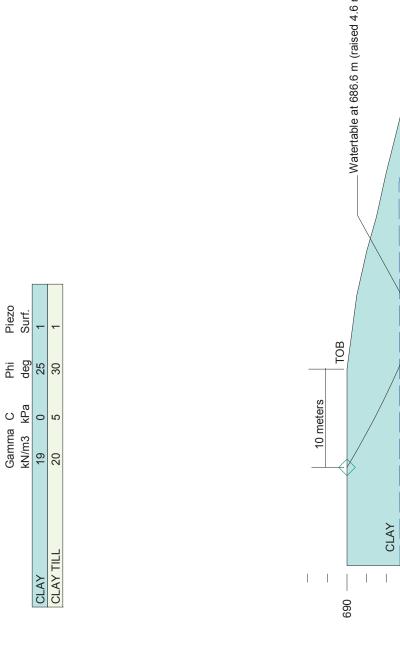


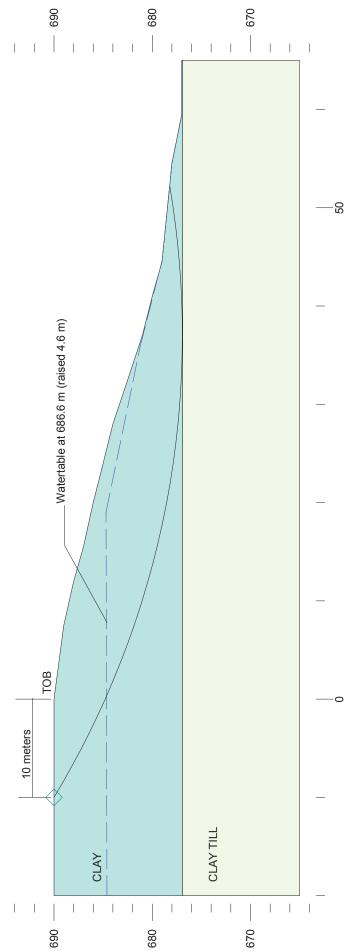
03/04/2014 1:34:10 PM H:IDATA 2014/6004 Stantec/6004-32(Curr) Slope Riverview NB1-3/G-SLOPE/Section 7C UDL.gsl F = 1.290

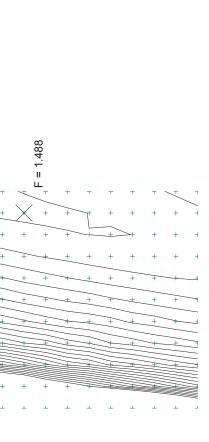
6004-32 Riverview NB 1-3

December 2013 Section 8C Wedgewood Creek


	Gamma C	ر د د	Phi	Piezo
	19	P 0	ueg 25	1 Jan.
	19	0	23	_
CLAY TILL	20	5	30	1


6004-32 Riverview NB 1-3

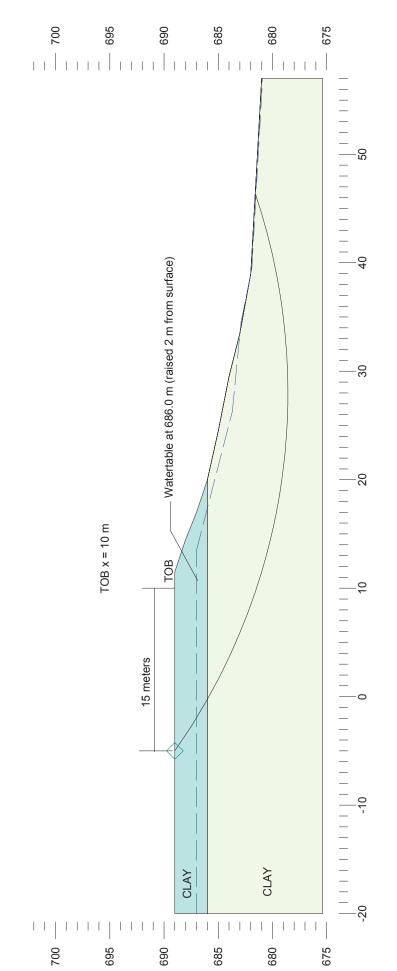

December 2013 Section 8C

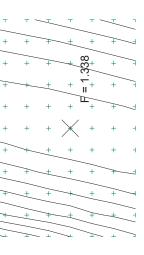

Wedgewood Creek

6004-32 Riverview NB 1-3 December 2013 Section 9C Wedgewood Creek

Piezo Surf.

Phi deg 25


00


19

CLAY

Gamma C kN/m3 kPa December 2013 Section 10C Wedgewood Creek

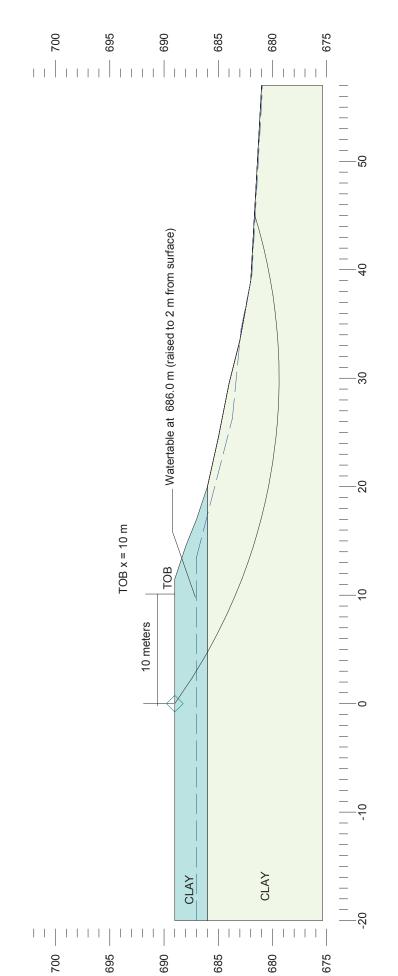
6004-32 Riverview NB 1-3

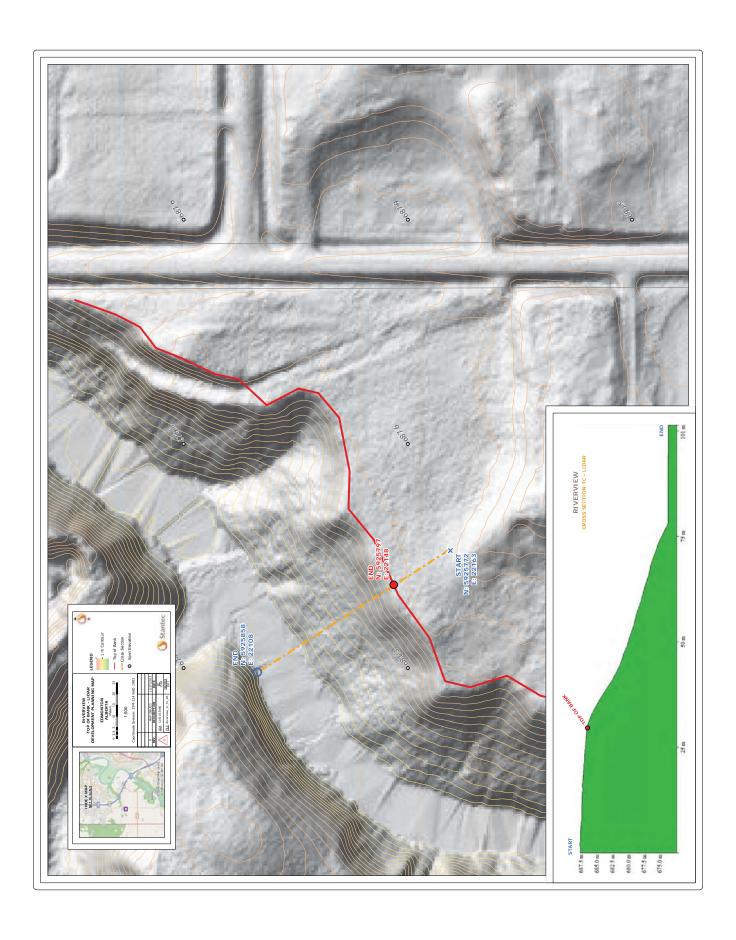
Piezo Surf.

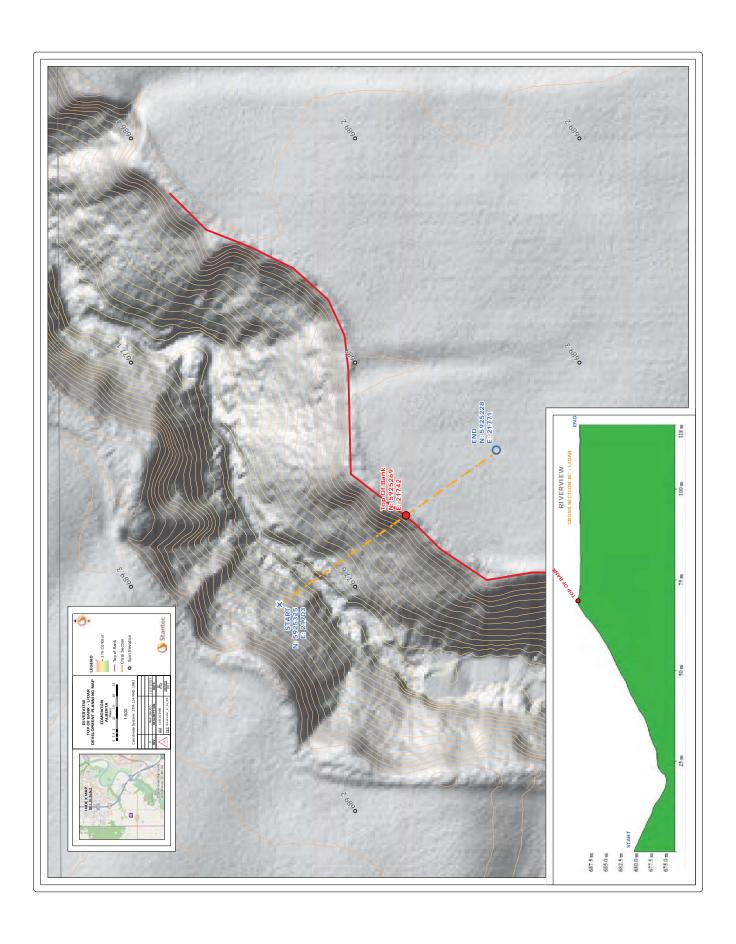
Phi deg 25

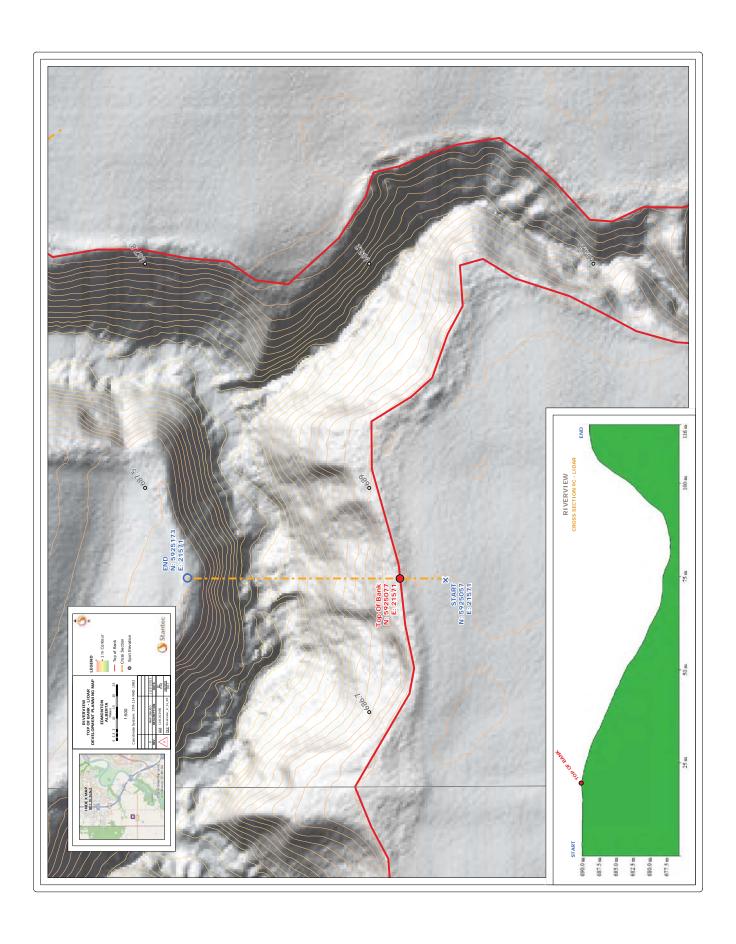
0 0

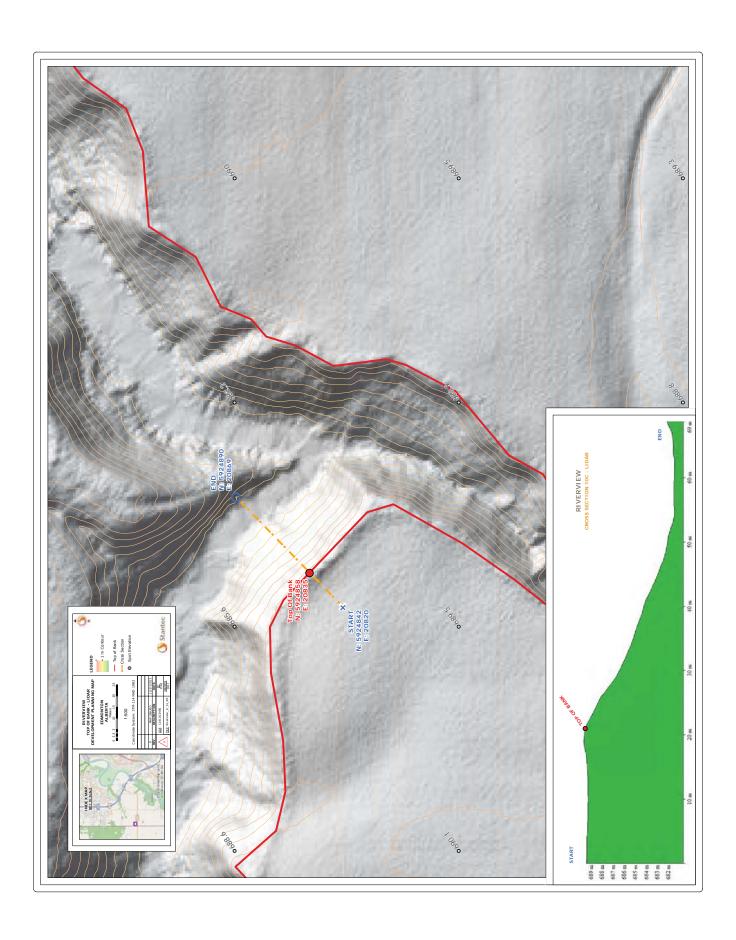
19 19


CLAY


Gamma C kN/m3 kPa


Section 10C Wedgewood Creek


Riverview NB 1-3 December 2013


6004-32

APPENDIX G

Traffic Impact Assessment

Riverview Neighbourhoods 1, 2, & 3 Neighbourhood Structure Plans Transportation Impact Assessment

Final Draft Report

Prepared for

Qualico Development West Walton Development and Management LP Sunwapta Holdings Corp. Melcor Developments Ltd. S.P. Singh

Date

November 17, 2014

Prepared by

Bunt & Associates

Project No.

3366.03

TABLE OF CONTENTS

1.	INTE	RODUCTION	1
	1.1	Background	1
	1.2	Study Purpose	1
	1.3	Study Scope	1
	1.4	Study Methodology	2
2.	SITE	CONTEXT - AREA CONDITIONS	3
	2.1	Site Location	3
	2.2	Existing Land Use Characteristics	3
	2.3	Existing Transportation System	6
		2.3.1 Existing Roadway Network	6
		2.3.2 Existing Traffic Volumes	7
		2.3.3 Existing Transit Routes	8
		2.3.4 Existing Truck Routes	8
		2.3.5 Horizon Year	
	2.4	2047 Study Area Conditions	
		2.4.1 Future Arterial Roadway Network	
		2.4.2 Future Truck Routes	
		2.4.3 2047 Background Traffic Volumes	9
3.	PRO	POSED LAND USE CONCEPT	15
	3.1	Development Concepts	15
		3.1.1 Riverview ASP	
		3.1.2 Riverview NBHDs 1, 2, and 3 NSPs	
		3.1.3 Land Use Statistics	
		3.1.4 Non-Residential Land Uses	
		3.1.5 Residential Land Uses	
	3.2	Riverview NBHDs 1, 2, & 3 Collector Roadway Network	
	3.3	Active Transportation	
		3.3.1 Active Modes Network	
	2.4	3.3.2 Facility Types	
	3.4	Parking	
4.	SITE	TRAFFIC CHARACTERISTICS	31
	4.1	Trip Generation Rate Assumptions	
		4.1.1 Non-Residential Land Uses	
		4.1.2 Residential Land Uses	
	4.2	Gross Trip Generation Estimates	35

	4.3	Net Internal and External Trip Generation Estimates	37
		4.3.1 Non-Residential Trips	37
		4.3.2 Residential Trips	41
	4.4	Trip Distribution	42
		4.4.1 Non-Residential Trip Distribution	42
		4.4.2 Residential Trip Distribution	43
	4.5	Site Generated Traffic Volume Estimates	45
	4.6	Total Traffic Volume Estimates	45
5.	ASP	ROADWAY ASSESSMENT	55
	5.1	Assumed Arterial Roadway Geometry	55
		5.1.1 Assumed Arterial Roadway Cross-Sections	55
	5.2	Intersection Capacity Analysis Assumptions	57
	5.3	Arterial/Arterial Intersections	59
		5.3.1 Anthony Henday Drive and Cameron Heights Interchange	59
		5.3.2 23 Avenue and Riverview Way	63
		5.3.3 23 Avenue and 199 Street	65
		5.3.4 23 Avenue and 215 Street	67
		5.3.5 Riverview Way and 199 Street	68
		5.3.6 Riverview Way and 215 Street	69
		5.3.7 Quadrant Avenue and 215 Street	70
		5.3.8 Twp. Rd. 514 and 215 Street	71
		5.3.9 Lessard Road and 199 Street	72
		5.3.10 Lessard Road and 215 Street	74
		5.3.11 Arterial/Arterial Intersection Summary	75
6.	NEI	GHBOURHOOD ROADWAY ASSESSMENT	79
	6.1	Riverview NBHDs 1, 2, and 3 Collector Roadways	79
		6.1.1 High Volume Collectors	79
		6.1.2 Low Volume Collectors	80
	6.2	Riverview NBHDs 1, 2, and 3 Enhanced Local Roadways	81
	6.3	Arterial/Collector and Arterial/Access Intersections	81
		6.3.1 23 Avenue Collector Intersections	82
		6.3.2 199 Street/Quadrant Avenue Arterial/Collector Intersections	87
		6.3.3 215 Street Arterial/Collector and Arterial/Access Intersections	94
		6.3.4 Riverview Way Arterial/Collector Intersections	98
	6.4	Collector/Collector and Collector/Access Intersections	102
		6.4.1 NBHD 1 Collector/Collector Intersections	
		6.4.2 NBHD 2 Collector/Collector Intersections	110
		6.4.3 NBHD 3 Collector/Collector Intersections	110
	6.5	Complete Streets	110
	6.6	Transit	117

	6.7	District Park and School Sites	117
7.	TRA	NSPORTATION NETWORK STAGING	119
	7.1	Short Term Development	119
		7.1.1 Short Term Assumed Roadway Network	119
		7.1.2 Short Term Background Traffic Volumes	
		7.1.3 Short Term Land Use Assumptions	
		7.1.4 Short Term Trip Generation	
		7.1.5 Trip Distribution and Assignment	120
		7.1.6 Short Term Roadway Assessment	
		7.1.7 Short Term Arterial Roadway Assessment	
	7.2	Staging of the Anthony Henday Drive and Cameron Heights Interchange Upgrades	127
8.	STU	DY SYNOPSIS	129
	8.1	Development Concept	129
	8.2	Proposed Arterial Roadway Network	129
	8.3	Active Modes Network	
	8.4	Traffic Generation	130
9.	CON	CLUSIONS AND RECOMMENDATIONS	131
	9.1	Conclusions	131
	9.2	Recommendations	131
API	PEND	X A CITY OF EDMONTON 2047 MODEL PACKAGE	
API	PEND	X B ASP AND NSP LAND USE CONCEPTS AND STATISTICS	
API	PEND	X C TRIP GENERATION	
API	PEND	X D CATCHMENT AREAS	

APPENDIX F CITY OF EDMONTON 2013 ORIGIN-DESTINATION TABLES

APPENDIX E NET TRIP GENERATION

EXHIBITS

Exhibit 2-1:	Riverview ASP Location	4
	Site Context Plan	
Exhibit 2-3:	2047 Background Traffic Volume Estimates AM (PM) Peak Hour	11
	2047 Daily Background Traffic Volume Estimates	
	Riverview ASP Amended Land Use Concept	
	Riverview NBHDs 1, 2, and 3 Land Use Concepts	
Exhibit 3-3:	Proposed 23 Avenue Intersection Spacing	25
	Riverview NBHDs 1, 2, and 3 Active Modes Network	
	External Residential Trip Distribution	
Exhibit 4-2:	Riverview Site Generated Daily Arterial Roadway Traffic Volume Estimates	47
	Riverview Site Generated Arterial/Arterial Intersection Traffic Volume Estimates AM (PM) Peak Hours	
Exhibit 4-4:	Riverview Site Generated Arterial/Collector Intersection Traffic Volume Estimates AM (PM) Peak Hours	49
Exhibit 4-5:	Riverview Site Generated Daily Collector Link and Collector/Collector Intersection Traffic Volume Estimates AM (PM) Peak Hours	
Exhibit 4-6:	Riverview Total Daily Arterial Roadway Traffic Volume Estimates	
	Riverview Total Arterial/Arterial Intersection Traffic Volume Estimates AM (PM) Peak Hours	
	Riverview Total Arterial/Collector Intersection Traffic Volume Estimates AM (PM) Peak Hours	
Exhibit 5-1:	Recommended Arterial Roadway Geometry	
	Arterial/Arterial, Arterial/Collector, and Arterial/Access Recommended Intersection Geometry and Traffic Control	
Exhibit 6-2:	Riverview NBHDs 1, 2, and 3 Recommended Collector Roadway Geometry and Traffic Control	
Exhibit 7-1:	Riverview NBHDs 1, 2, and 3 Assumed Short Term Development Area	
TABLES		
Table 2-1:	Historic AAWDT Volumes	7
Table 3-1:	Riverview ASP Non-Residential Trip Generating Land Uses by Neighbourhood	19
Table 3-2:	Town Centre Non-Residential Land Use Assumptions	20
Table 3-3:	CSC and CNC Commercial GFA Assumptions	21
Table 3-4	Riverview ASP Residential Area by Neighbourhood	22
Table 3-5:	Riverview ASP Housing Unit Estimates	23
Table 3-6:	Riverview ASP Population Estimates	24
Table 4-1:	Non-Residential Trip Generation Rates	34
Table 4-2:	Residential Trip Generation Rates	35
Table 4-3:	Gross Trip Generation Estimates	36

Table 4-4:	Pass-by Trip Percentages	38
Table 4-5:	Internal and External Trip Percentages	40
Table 4-6:	Non-Residential Net Trip Generation	41
Table 4-7:	Residential Net Trip Generation	42
Table 4-8:	Adjusted Residential Origin-Destination Percentages	43
Table 5-1:	Arterial Roadway Traffic Volume Ranges	55
Table 5-2:	Arterial Roadway Cross-Sections	56
Table 5-3:	Anthony Henday Drive and Cameron Heights Interchange North Ramp Intersection	60
Table 5-4:	Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection	61
Table 5-5:	Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection -	
	Revised Assessment	62
Table 5-6:	23 Avenue and Riverview Way	64
Table 5-7:	23 Avenue and Riverview Way - Revised Assessment	65
Table 5-8:	23 Avenue and 199 Street	66
Table 5-9:	23 Avenue and 215 Street	68
Table 5-10:	Riverview Way and 199 Street	69
Table 5-11:	Riverview Way and 215 Street	70
Table 5-12:	Quadrant Avenue and 215 Street	71
Table 5-13:	Twp. Rd. 514 and 215 Street	72
Table 5-14:	Lessard Road and 199 Street	73
Table 5-15:	Lessard Road and 215 Street	75
Table 5-16:	Arterial Roadway Cross-Sections	76
Table 6-1:	23 Avenue Arterial/Collector Intersection Summaries	83
Table 6-2:	199 Street/Quadrant Avenue Arterial/Collector Intersection Summaries	89
Table 6-3:	215 Street Arterial/Collector Intersection Summaries	95
Table 6-4:	Riverview Way Arterial/Collector Intersection Summaries	99
Table 6-5:	NBHD 1 Collector/Collector Intersection Summaries	106
Table 6-6:	NBHD 1 Collector/Collector Intersection Summaries	111
Table 6-7:	NBHD 1 Collector/Collector Intersection Summaries	114
Table 7-1:	Short Term Trip Generation	120
Table 7-2:	Short Term Daily Traffic Volumes	122
Table 7-3:	23 Avenue and 199 Street	125
Table 7-4:	Anthony Henday Drive and Cameron Heights Interchange North Ramp Intersection	126
Table 7-5:	Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection	127
Table 9-1:	Recommended Arterial Roadway Network Cross-Sections	131

1. INTRODUCTION

1.1 Background

The Riverview Area Structure Plan (ASP) was adopted by City of Edmonton council on July 3, 2013. Shortly thereafter, planning was initiated on the first three neighbourhoods within the ASP. Neighbourhoods (NBHDs) 1, 2, and 3 generally encompass the northern two thirds of the ASP area and provide the opportunity to extend infrastructure and services into Riverview. As part of the Neighbourhood Structure Plan (NSP) process, a Transportation Impact Assessment (TIA) was initiated to confirm the transportation infrastructure required to support the ASP area and to identify internal transportation elements within the three initial neighbourhoods.

1.2 Study Purpose

The purpose of the Riverview NBHDs 1, 2, and 3 TIA is to update the conclusions and recommendations identified in the Riverview ASP TIA prepared by Bunt & Associates in 2013 to reflect current land use and trip generation assumptions as well as to identify the transportation infrastructure requirements within the first three Riverview neighbourhoods.

1.3 Study Scope

The scope of the Riverview NBHDs 1, 2, and 3 TIA reflects the requirement to revisit technical aspects of the original Riverview ASP TIA as well as provide neighbourhood level details for the first three neighbourhoods. The following elements were considered to be within the overall scope of the assignment:

ASP TIA Update Components

- A review of the arterial roadway network within Riverview; and,
- Confirmation of the proposed arterial/arterial intersection geometry within Riverview.

NBHDs 1, 2, and 3 TIA Components

- A review of the collector roadway network within NBHDs 1, 2, and 3;
- A review of arterial/collector and collector/collector intersection geometry within NBHDs 1, 2, and 3;
- A review of the active modes network within NBHDs 1, 2, and 3, including potential connections to and through adjacent communities; and,
- A review of potential transit operations through NBHDs 1, 2, and 3.

1.4 Study Methodology

The methodology for the completion of an ASP TIA is not significantly different from the completion of an NSP TIA. The primary difference is the level of detail included in a neighbourhood level assessment. The land use concepts are more detailed at the neighbourhood level; therefore, a more detailed analysis of the transportation infrastructure can be completed. Based on the above, the following methodology was used in the assessment:

- An examination of the development area with respect to existing conditions: land use, roadways, and traffic conditions;
- An examination of the proposed future roadway network within and adjacent to the area;
- The identification of future background traffic volumes in the vicinity of the neighbourhoods;
- The review of land use assumptions identified within the ASP and NSP documents;
- The identification of traffic on the proposed roadway network that is anticipated to be generated by Riverview based on trip generation, trip distribution, mode split, and trip assignment assumptions;
- An analysis of the vehicle based roadway network based on the background and site generated traffic estimates;
- The identification of an active modes network within NBHDs 1, 2, and 3 that provides both commuter and recreation opportunities; and,
- A review of the collector roadway network to identify potential transit opportunities and constraints within NBHDs 1, 2, and 3.

2. SITE CONTEXT - AREA CONDITIONS

2.1 Site Location

Riverview is located in southwest Edmonton and encompasses in the order of 1,430 hectares. The area is bounded by the North Saskatchewan River to the east, 33 Avenue SW to the south (south City limits), 215 Street to the west (west City limits), Wedgewood Ravine to the north, and Anthony Henday Drive to the northeast. Riverview NBHDs 1, 2, and 3 encompass the northern two thirds of the ASP area with NBHD 1 located north of 23 Avenue, NBHD 2 located north and west of Quadrant Avenue/199 Street, and NBHD 3 located east of 199 Street.

Exhibit 2-1 illustrates the location of the Riverview ASP within the context of the greater City of Edmonton area while **Exhibit 2-2** illustrates locations of the three neighbourhoods and identifies the existing roadway network within the Riverview ASP area.

2.2 Existing Land Use Characteristics

The majority of the lands within Riverview are currently zoned AG – Agricultural Zone. Country residential land uses are also accommodated in a number of areas under the RR – Rural Residential zone, generally along the banks of the North Saskatchewan River. A small country residential subdivision is also located on the south side of Wedgewood Creek, east of 199 Street. Other approved land uses in the area are Metropolitan Recreation Zone (Zone A) and Public Parks Zone (Zone AP).

In addition to the above, Riverview currently includes a number of pipeline corridors and oil wells and also includes an Altalink Power Corridor that runs east/west through the north portion of the plan area.

A number of natural areas have been identified within and adjacent to the ASP area. The North Saskatchewan River Valley forms the east boundary of the plan area and includes Big Island, which is an oxbow that is a critical habitat for ungulate, songbird, and waterfowl species. Wedgewood Ravine generally forms the north boundary of the ASP area and is an important extension of the North Saskatchewan River Valley. A major wetland (NW 355) and a remnant woodlot (NW 384) have been identified along with a number of smaller natural areas within the ASP boundaries.

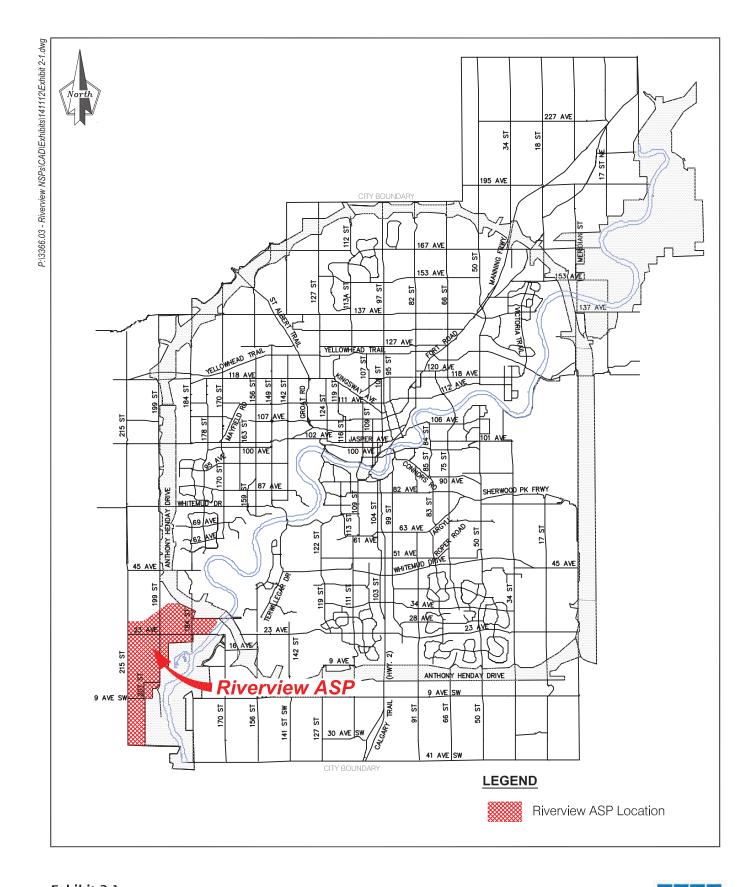


Exhibit 2-1 N.T.S.

bunt &associates

Riverview ASP Location

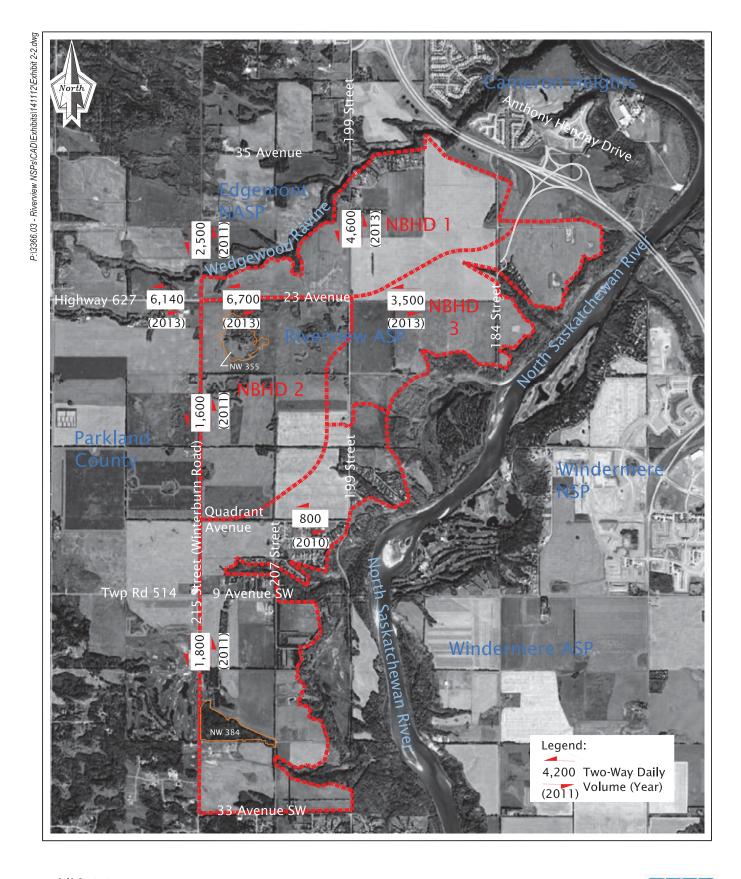


Exhibit 2-2 N.T.S.

2.3 Existing Transportation System

2.3.1 Existing Roadway Network

Based on the City of Edmonton Transportation System Bylaw 15101, the plan area is currently accessed via the following arterial roadways:

- 23 Avenue is a rural arterial roadway that runs east/west through the north portion of the plan area from 184 Street to 215 Street. A portion of the future 23 Avenue was recently completed between Anthony Henday Drive and 184 Street with the construction of the Anthony Henday Drive/Cameron Heights interchange. The posted speed limit on 23 Avenue is 60 km/hr between 184 Street and 199 Street and is 80 km/hr between 199 Street and 215 Street. West of the City limits, 23 Avenue extends into Parkland County as Highway 627.
- Quadrant Avenue is an east/west two-lane rural arterial roadway between 199 Street and 207 Street.
 Although identified as an arterial in the Transportation System Bylaw, the roadway predominantly provides access to country residential land uses. The posted speed limit on Quadrant Avenue is 60 km/hr.
- 9 Avenue SW is an east/west two-lane rural arterial roadway between 207 Street and 215 Street with a posted speed limit of 60 km/hr. Similar to Quadrant Avenue, 9 Avenue SW primarily provides access to country residential land uses.
- Township Road 514 (Twp. Rd. 514) is a two-lane cold mix asphalt road between 215 Street and Highway 60 within Parkland County. The posted speed limit along Twp. Rd. 514 is 80 km/hr.
- 184 Street is a north/south rural arterial roadway between the Transportation Utility Corridor (TUC) and 23 Avenue and currently provides interim access between the Anthony Henday Drive/Cameron Heights interchange and the existing 23 Avenue corridor. The posted speed limit along 184 Street is 60 km/hr. South of 23 Avenue, 184 Street is a two-lane rural roadway that provides access to existing country residential land uses.
- 199 Street is a north/south two-lane rural arterial roadway that extends from Quadrant Avenue to Wedgewood Creek, bisecting the plan area. The posted speed limit along 199 Street within Riverview is 80 km/hr. 199 Street continues north of Wedgewood Creek providing access to Edgemont, The Hamptons, and Glastonbury, and also connects to Lewis Estates Boulevard in the Lewis Farms area north of Whitemud Drive. South of Quadrant Avenue, 199 Street continues as a local roadway providing access to the North Saskatchewan River Valley.
- 215 Street (Winterburn Road) is a north/south two-lane rural arterial roadway that runs along the west boundary of Riverview and also forms the west boundary of the City of Edmonton. The posted speed limit along 215 Street adjacent to Riverview is 80 km/hr.

In addition to the above arterial roadways, Anthony Henday Drive is currently developed as a freeway to Alberta Transportation standards along the northeast edge of the area, and a trumpet interchange is currently constructed at Cameron Heights Drive. The west leg of the Cameron Heights interchange provides access to Riverview.

2.3.2 Existing Traffic Volumes

Existing and historic traffic flows on arterial roadways immediately adjacent to the development area were ascertained based upon a review of the most current City of Edmonton and Alberta Transportation traffic volume data bases. **Table 2-1** summarizes the historic Average Annual Weekday Traffic (AAWDT) volume or Average Annual Daily Traffic (AADT) volume information. The most current daily volumes are also illustrated on Exhibit 2-2.

Table 2-1: Historic AAWDT Volumes

Roadway	2007	2008	2009	2010	2011	2012	2013
23 Avenue West of 184 Street	-	200	-	-	200	-	3,500
23 Avenue West of 199 Street	-	6,300	-	-	4,400	-	6,700
199 Street North of 23 Avenue	-	-	-	-	5,600	-	4,600
215 Street North of 23 Avenue	-	-	-	-	2,500	-	-
215 Street South of 23 Avenue	1,800	2,400	-	-	1,600	-	-
215 Street North of 25 Avenue SW	1,800	2,000	1,500	2,100	1,800	-	-
Quadrant Avenue SW West of 199 Street	-	800	-	800	-	-	-
Highway 627 East of RR 261 (Fleming Road)*	4,740	4,740	4,780	6,040	6,160	6,060	6,140

^{*}Highway 627 Volumes represent Average Annual Daily Traffic Volumes from Alberta Transportation's website.

The overall magnitude of traffic identified on the existing roadways in Riverview is not substantial; however, based on the locations where the volumes were measured and a review of the overall country residential development existing within the plan area, not all of the traffic on the existing roadways is anticipated to be generated by land uses within Edmonton. It is anticipated that some of the traffic along 23 Avenue to 215 Street, 199 Street, and Anthony Henday Drive represents trips between Parkland County

and the City of Edmonton. As well, the majority of traffic along 215 Street is anticipated to represent trips between Parkland County and the City of Edmonton.

2.3.3 Existing Transit Routes

Edmonton Transit System (ETS) does not currently provide service within the Riverview ASP area. The nearest bus route to the plan area is Route 103, which provides transit service to the existing Cameron Heights neighbourhood. Route 103 operates between West Edmonton Mall and Cameron Heights with a 30 minute frequency on weekdays between 6:00 AM and 9:45 PM and Saturdays between 9:15 AM and 6:45 PM (start/end times as per Cameron Heights Way stop). The route also operates with an hourly frequency on Sundays between 10:30 AM and 6:15 PM.

A second route, Route 117, currently operates during peak hours between the Lewis Farms Transit Centre and the southern portion of The Hamptons.

2.3.4 Existing Truck Routes

There are currently no truck routes identified within Riverview; however, three routes operate adjacent to the plan area as follows:

- Anthony Henday Drive located northeast of the plan area is a dangerous goods route and truck route;
- 215 Street from 23 Avenue to Whitemud Drive is designated a 24-hour truck route; and,
- Highway 627 west of 215 Street is designated a 24-hour truck route.

2.3.5 Horizon Year

Based on a review of the Riverview ASP, it is anticipated that the plan area will be fully developed within 30 to 40 years, or between approximately 2042 and 2052. To be consistent with City of Edmonton Transportation Services' department planning horizons, the 2047 horizon was selected for assessment purposes.

2.4 2047 Study Area Conditions

2.4.1 Future Arterial Roadway Network

The following arterial roadway network is planned within and adjacent to Riverview.

- It is anticipated that **Anthony Henday Drive** will be upgraded to include six travel lanes on the mainline within the 2047 horizon. The **Cameron Heights interchange** was constructed to its ultimate configuration in 2010/2011 and no improvements are planned for the interchange in the 2047 horizon.
- 23 Avenue between Anthony Henday Drive and 215 Street is designated as a highway connector within the Transportation Master Plan: The Way We Move. The City of Edmonton has prepared concept

plans for the corridor which include the development of a six-lane divided arterial roadway with a posted speed limit of 70 km/hr and intersection spacing of approximately 400 metres.

- 199 Street will be upgraded to an urban standard as it extends south from Edgemont. Within the plan area, 199 Street is proposed to follow the existing right-of-way to a point approximately 300 metres south of 23 Avenue, and then curve west, intersecting with Riverview Way approximately 280 metres west of the existing 199 Street right-of-way. 199 Street is proposed to continue south for another 800 metres before curving west to intersect 215 Street at approximately *Quadrant Avenue*. 199 Street is anticipated to be developed as a standard four-lane divided arterial through the plan area.
- 215 Street is proposed to be upgraded to an urban arterial along the existing roadway alignment along the west side of the plan area. At this time, it is anticipated that 215 Street will be developed as a four-lane divided arterial south of 23 Avenue, expanding to a six-lane divided arterial north of 23 Avenue.

2.4.2 Future Truck Routes

Anthony Henday Drive is anticipated to be maintained as a dangerous goods route and truck route, and 215 Street between 23 Avenue and Whitemud Drive and Highway 627 west of 215 Street are anticipated to be maintained as 24-hour truck routes in the long term. In addition to these existing routes, it is anticipated that 23 Avenue will be identified as a 24-hour truck route when it is upgraded to an urban standard based on its classification as a highway connector.

2.4.3 2047 Background Traffic Volumes

Background traffic is the component of traffic on the adjacent road system that would be present regardless of development within Riverview. The City of Edmonton provided a standard model package and a gate analysis from a special west Edmonton run of their 2047 regional travel model to assist in the development of background traffic volumes for use in this assessment.

The gate analysis provided origin and destination information between eight locations adjacent to the boundaries of Riverview. This information was used to develop 2047 background turning movement volumes at the intersections within Riverview.

For study area intersections outside the boundaries of Riverview (i.e. Lessard Road/199 Street and Lessard Road/215 Street), 2047 background turning movement volumes were developed based on the following methodology:

 Intersection turning movement volumes were estimated based on link volumes from the standard model package for the Lessard Road intersections as well as the Edgemont access intersections along 199 Street, 215 Street, and Lessard Road;

- The AM and PM peak hour volumes at the nearest gate were used to establish the 2047 background volumes on 199 Street and 215 Street north of Wedgewood Creek; and,
- Traffic volumes at the intersections north of Wedgewood Creek were reduced to reflect the 2047 gate volumes. This included a reduction in traffic through Edgemont as well as traffic generated within Edgemont.

Exhibit 2-3 illustrates the 2047 AM and PM peak hour background traffic volume estimates. For the purposes of this assessment, daily background traffic volumes were estimated by multiplying the sum of the AM and PM peak hour turning movements by a factor of six. **Exhibit 2-4** illustrates the estimated 2047 two-way daily traffic volumes along the arterial roadway network. The City of Edmonton's standard model package and traversal gate map and matrix are provided in **Appendix A** for reference.

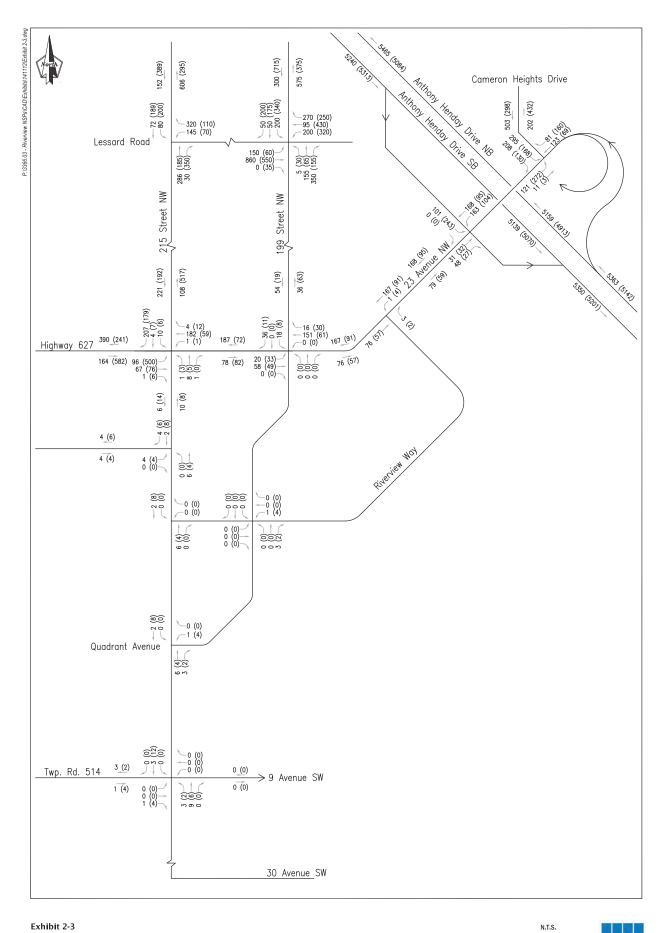


Exhibit 2-3

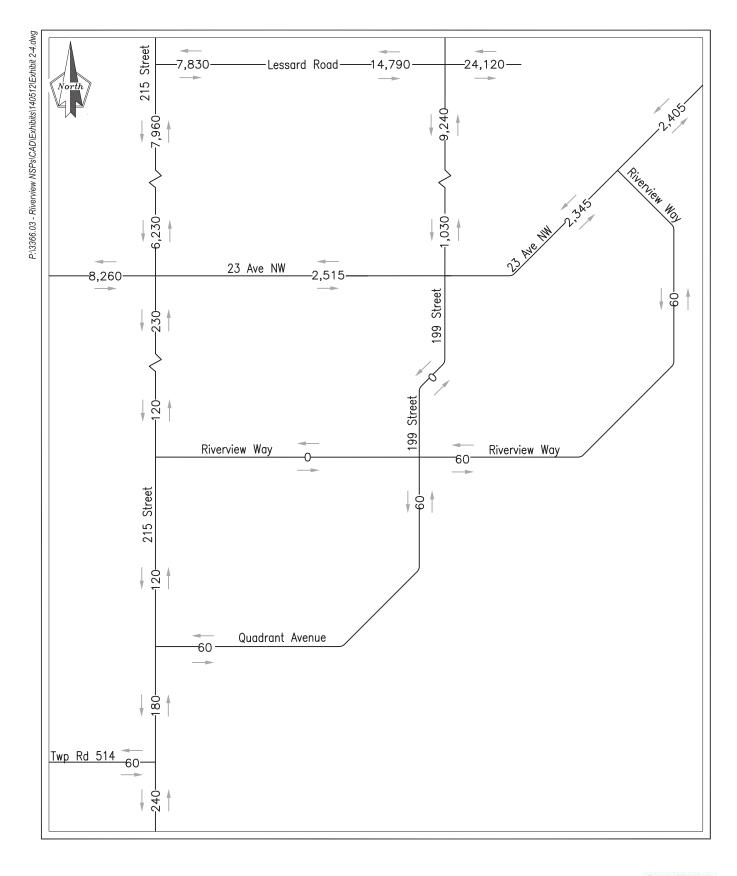


Exhibit 2-4

THIS PAGE INTENTIONALLY LEFT BLANK

3. PROPOSED LAND USE CONCEPT

3.1 Development Concepts

3.1.1 Riverview ASP

Land Use Concept

The Riverview ASP land use concept is illustrated in **Exhibit 3-1**. As shown in Exhibit 3-1, the plan is proposed to include a mix of residential, commercial, business employment, and parks/open spaces. Residential development is anticipated to predominantly include low density residential land uses; however, row housing, low-rise/medium density housing, and medium to high rise housing are also proposed to be developed within the plan area.

A town centre commercial area is proposed within the north central portion of the Riverview ASP area. The town centre designation encompasses the northeast, northwest, and southwest corners of the 23 Avenue/199 Street intersection and is complemented by a future transit centre on the southeast corner of the 23 Avenue/199 Street intersection. Although these elements span three separate neighbourhoods, the intent is to provide complementary uses within the town centre that create a central focal point for Riverview as a whole.

Arterial Roadway Network

In addition to the arterial roadway upgrades noted in Section 2.4.1, the Riverview ASP identifies the construction of a new east/west arterial in the plan area. *Riverview Way* is proposed to extend south from 23 Avenue at approximately 190 Street, parallel the North Saskatchewan River Valley to the southwest, and then continue west to 215 Street. Within the proposed Riverview ASP amendment, the alignment has been revised to connect to 215 Street north of the wetland area to facilitate water flow to the retained wetland area. Riverview Way is proposed to be developed as a four-lane roadway between Riverview Way and 199 Street and a two-lane arterial between 199 Street and 215 Street.

3.1.2 Riverview NBHDs 1, 2, and 3 NSPs

The land use concepts for Riverview NBHDs 1, 2, and 3 are illustrated on Exhibit 3-2.

Riverview NBHD 1

Riverview NBHD 1 is bounded by Wedgewood Creek to the north, 23 Avenue to the south, the TUC to the east, and 215 Street to the west. The neighbourhood includes business employment land uses in the east, towards the TUC and Anthony Henday Drive, and town centre land uses on the northeast and northwest corners of the 23 Avenue/199 Street intersection. Residential land uses complemented by a series of parks, open spaces, and storm water management facilities make up the remainder of Riverview NBHD 1.

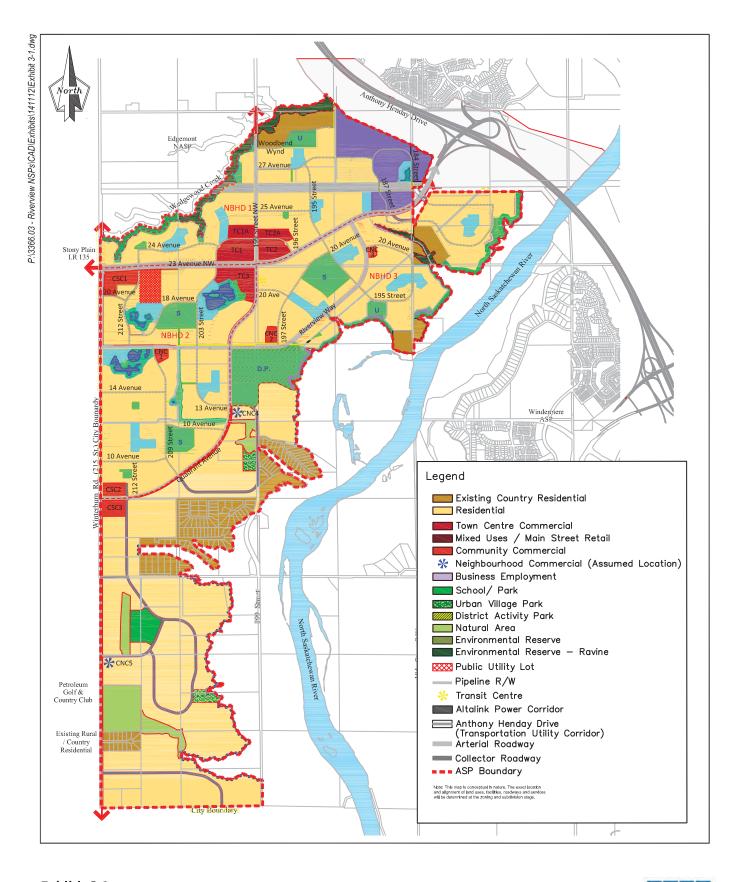


Exhibit 3-1 N.T.S.

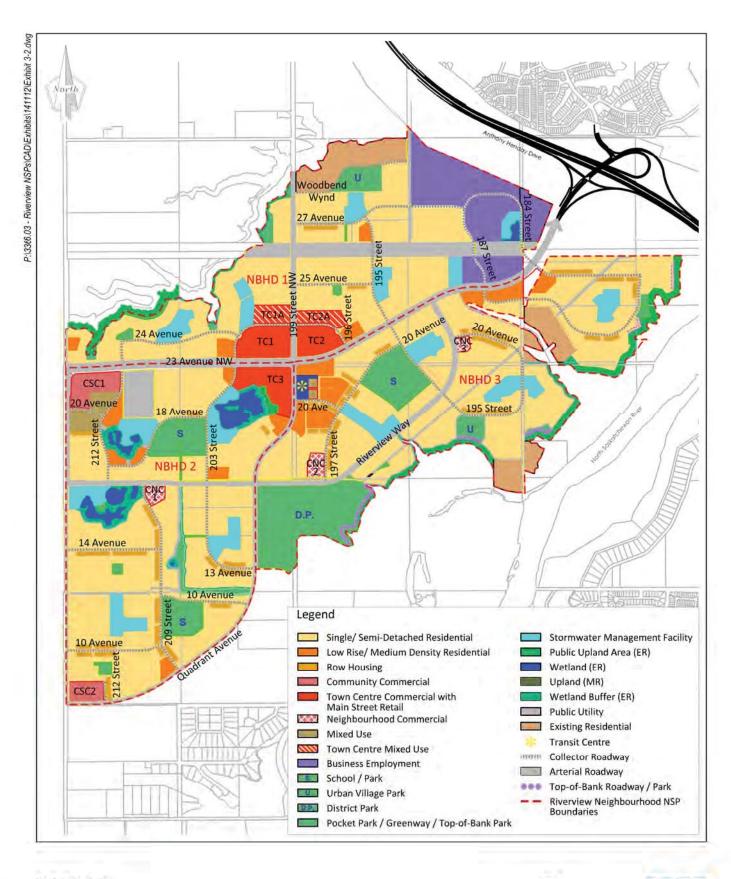


Exhibit 3-2 N.T.S.

Riverview NBHD 2

Riverview NBHD 2 is bounded by 23 Avenue to the north, 199 Street/Quadrant Avenue to the east and south, and 215 Street to the west. The proposed development concept includes a portion of the town centre in the northeast corner of the neighbourhood, community commercial (CSC) land uses along 215 Street, a neighbourhood commercial (CNC) site located centrally within the neighbourhood, a public K-9 school in the north central portion of the neighbourhood, and a catholic K-9 school located in the south central portion of the neighbourhood. Riverview NBHD 2 includes significant retained natural areas that have been incorporated into the plan area. Low density and row housing residential land uses are provided throughout the neighbourhood, with multi-family parcels focused around the town centre, the northwest CSC site, and at key arterial/collector intersections.

The land uses in the northwest corner of Riverview NBHD 2 include a combination of commercial, residential/mixed use, and medium density residential land uses. The intent of this development is to incorporate a mix of housing options and commercial uses within a comprehensively planned development. At this time, opportunities to implement seniors/lifestyle residential mixed use have been discussed for this area; however, typical medium and medium to high density land uses have been assumed in this assessment.

Riverview NBHD 3

Riverview NBHD 3 is bounded by 23 Avenue to the north, the North Saskatchewan River Valley to the south, the TUC to the east, and 199 Street to the west. The neighbourhood predominantly includes residential land uses with the majority of the density provided around the future transit centre on the southeast corner of the 23 Avenue/199 Street intersection. In addition to residential land uses, two CNC sites, a public/catholic K-9 school, and the district park are planned within Riverview NBHD 3.

3.1.3 Land Use Statistics

Land use statistics for the first three Riverview NSPs were provided by Stantec on October 9, 2014 for use in TIA. Land use information for Riverview NBHDs 4 and 5 was taken from the March 20, 2014 Riverview ASP amendment developed by Stantec. A full summary of the Riverview land use statistics are included in **Appendix B**.

3.1.4 Non-Residential Land Uses

Table 3-1 summarizes the non-residential trip generating land uses by neighbourhood.

Table 3-1: Riverview ASP Non-Residential Trip Generating Land Uses by Neighbourhood

Development Component	NBHD 1	NBHD 2	NBHD 3	NBHD 4	NBHD 5	Total
Town Centre Commercial	21.37 ha	8.74 ha	0.49 ha¹	-	-	30.60 ha
CSC Sites	-	9.94 ha	-	4.00 ha	-	13.94 ha
CNC Sites	-	1.76 ha	2.95 ha	1.00 ha	1.00 ha	6.71 ha
Business Employment	41.72 ha	-	-	-	-	41.72 ha
School/Park ²	-	16.44 ha	12.10 ha	-	9.50 ha	38.04 ha
District Activity Park ²	-	-	34.29 ha	-	-	34.29 ha

¹Transit Centre Mixed Use Site - Commercial Component

The following assumptions were made regarding the potential development characteristics of non-residential land uses.

Town Centre

It is anticipated that an overall master plan will be developed for the town centre commercial sites that also considers the integration of the transit centre and adjacent transit supportive land uses. However, until such time as additional planning work is completed, the following key ideas/elements have been considered in the identification of land use and trip generation assumptions for use in the TIA.

- Four town centre sites: two commercial and two mixed use, have been identified within NBHD 1. For the purposes of this assessment, the town centre commercial sites (TC1 and TC2) are assumed to be developed as typical CSC sites with an average floor area ratio (FAR) of 0.25, while the mixed use sites (TC1A and TC2A) are assumed to be developed at a higher density, including an FAR of 0.50 for commercial land uses plus a density of 90 du/ha over 50% of the site for residential land uses.
- The town centre commercial site in NBHD 2 (TC3) is proposed to include a main street retail component. For the purposes of this assessment, 1.0 ha of TC3 is assumed to be developed as a main street style commercial area at an FAR of 1.0, with the remaining area transitioning to a more typical CSC site at an FAR of 0.25.
- A mixed use/apartment site is proposed adjacent to the transit centre in NBHD 3. For the purposes of
 this assessment, an FAR of 1.0 was assumed for the commercial component of the mixed use site.
 While the commercial and residential areas have been calculated separately, it is anticipated that the
 land uses will be integrated into one comprehensive development.

²Trip generating land uses on school/park sites and the district park site include schools and major recreation facilities.

Table 3-2 summarizes the commercial land use assumptions for the town centre area.

Table 3-2: Town Centre Non-Residential Land Use Assumptions

Town Centre Site	Area	Commercial FAR	GFA¹
TC1 - commercial	8.47 ha	0.25	227,900 SF
TC1A - mixed use	3.48 ha	0.50	187,300 SF
TC2 - commercial	6.16 ha	0.25	165,800 SF
TC2A - mixed use	3.26 ha	0.50	175,500 SF
TC3 -commercial	7.74 ha	0.25	208,300 SF
TC3 - main street	1.00 ha	1.00	107,600 SF
Transit Centre Mixed Use	0.49 ha	1.00	52,700 SF
Total	30.60 ha		1,125,100 SF

¹ Gross Floor Area (GFA)

Community Commercial (CSC) Sites

Three CSC sites are identified within the Riverview ASP area; two within NBHD 2 (CSC1 and CSC2) and one within NBHD 4 (CSC3). These sites are assumed to be developed as typical grocery anchored commercial sites at an FAR of 0.25.

Neighbourhood Commercial (CNC) Sites

A total of five CNC sites have been identified within the Riverview ASP area; one in NBHD 2 (CNC1), two in NBHD 3 (CNC2 and CNC3), one in NBHD 4 (CNC4), and one in NBHD 5 (CNC5). Two of the sites, CNC1 and CNC2, are assumed to be developed as mixed use sites with approximately half the area developed as commercial land uses at an FAR of 0.25 and the other half developed as medium density land uses at a density of 90 du/ha. The remaining three sites (CNC3, CNC4, and CNC5) are assumed to be developed as typical neighbourhood commercial sites at an FAR of 0.25.

 Table 3-3 summarizes the assumed GFA and residential densities for the CSC and CNC sites.

Table 3-3: CSC and CNC Commercial GFA Assumptions

Commercial Site	Area	Commercial FAR	GFA
CSC1	6.40 ha	0.25	172,200 SF
CSC2	3.54 ha	0.25	95,300 SF
CSC3	4.00 ha	0.25	107,600 SF
CNC1	0.88 ha	0.25	23,700 SF
CNC2	0.985 ha	0.25	26,500 SF
CNC3	0.98 ha	0.25	26,400 SF
CNC4	1.00 ha	0.25	26,900 SF
CNC5	1.00 ha	0.25	26,900 SF
Total ¹	18.79 ha		505,500 SF

¹Does not include residential portions of CNC1 and CNC2.

Business Employment

The land use statistics identify 41.72 ha of business employment land uses, which are proposed in the northeast corner of Riverview NBHD 1 adjacent to Anthony Henday Drive. Based on a review of the land use concept, this is anticipated to represent the net developable area within the business employment area (collector road right-of-way and storm water management facility areas removed).

- The business employment area is anticipated to be similar to the Ellerslie Industrial area in southeast Edmonton. The Ellerslie Industrial area includes a mix of highway commercial land uses such as hotels and car dealerships and business land uses such as office buildings and light industrial land uses. For the purpose of this assessment, it is assumed that about 12.0 ha would be developed as highway commercial land uses and the remaining 29.72 ha would be developed as a mix of business land uses.
- The 12.0 ha of highway commercial land uses is assumed to include three-1.5 ha hotel sites accommodating an average of 250 rooms/hotel and five-1.5 ha car dealerships accommodating 30,000 SF buildings.
- Based on information provided by Colliers International, an FAR of 0.40 and a ratio of 400 SF per employee were assumed to estimate the total employee population that could be generated by the business employment land uses. Based on these assumptions 3,200 people could potentially be employed in the business employment area.

District Park

The district park is assumed to include a community recreation centre (pool, saunas, whirlpools, fitness area, and community multi-purpose rooms) and two arenas. Based on a review of a similar facility planned for The Meadows, the community recreation centre component is anticipated to be approximately 100,000 SF and the arenas are assumed to accommodate a total of 700 seats.

A number of playing fields are anticipated to be developed on the district park site. Information regarding the number of fields is not available at this time; however, based on a review of The Meadows District Park site, seven sports fields have been assumed in the assessment.

School Sites

One public high school and one catholic high school are also anticipated to be accommodated on the district park site. It is assumed that the public high school will accommodate 1,550 students and the catholic high school will accommodate 800 students.

Five elementary/junior high schools (K-9) (three Public, two Catholic) are planned within the Riverview ASP area. It is assumed that the elementary/junior high schools could each accommodate 750 students.

3.1.5 Residential Land Uses

Table 3-4 summarizes the residential land use statistics used in the preparation of the TIA.

Table 3-4 Riverview ASP Residential Area by Neighbourhood

Residential Land Use	NBHD 1	NBHD 2	NBHD 3	NBHD 4	NBHD 5	Total
Existing Country Residential	15.60 ha	0.0 ha	15.83 ha	66.40 ha	18.60 ha	116.43 ha
Single/Semi-Detached	86.14 ha	121.65 ha	118.85 ha	60.20 ha	163.80 ha	550.64 ha
Row Housing	1.23 ha	11.29 ha	11.33 ha	6.00 ha	6.00 ha	35.85 ha
Low-rise/Multi/Medium Units	4.65 ha	8.42 ha	14.17 ha	4.00 ha	9.00 ha	40.24 ha
Residential Mixed Use ¹	3.37 ha	6.18 ha	1.465 ha	0.0 ha	0.0 ha	11.015 ha
High Density	0.0 ha	0.0 ha	0.0 ha	0.0 ha	1.00 ha	1.00 ha
Total	110.99 ha	147.54 ha	161.645 ha	136.60 ha	198.40 ha	755.175 ha

'Includes residential land uses associated with the town centre mixed use sites, the transit centre mixed use site, the NW NBHD 2 residential mixed use sites, CNC1, and CNC2.

The number of residential dwelling units and associated population anticipated to be developed within the plan area are based on estimates included in the ASP and NSP land use statistics provided by Stantec using the following residential and population densities:

- Single/Semi-Detached 25 du/ha, 2.8 people/du
- Row Housing 45 du/ha, 2.8 people/du
- Low-rise/Multi/Medium Units 90 du/ha, 1.8 people/du
- Residential Mixed Use 90 du/ha to 150 du/ha, 1.8 people/du
- High Density 225 du/ha, 1.5 people/du

The dwelling unit and population estimates for the existing country residential land uses are based on 2012 municipal census information.

Table 3-5 summarizes the housing estimates and **Table 3-6** summarizes the population estimates used in the preparation of this TIA.

Table 3-5: Riverview ASP Housing Unit Estimates

Residential Land Use	NBHD 1	NBHD 2	NBHD 3	NBHD 4	NBHD 5	Total
Existing Country Residential						180
Single/Semi-Detached	2,154	3,041	2,971	1,505	4,095	13,766
Row Housing	55	508	510	270	270	1,613
Low-rise/Multi/Medium Units	419	758	1,275	360	810	3,622
Residential Mixed Use	304	874	197	0	0	1,375
High Density	0	0	0	0	225	225
Total	2,932	5,181	4,953	2,135	5,400	20,781

Table 3-6: Riverview ASP Population Estimates

Residential Land Use	NBHD 1	NBHD 2	NBHD 3	NBHD 4	NBHD 5	Total
Existing Country Residential						496
Single/Semi-Detached	6,031	8,515	8,319	4,214	11,466	38,545
Row Housing	154	1,422	1,428	756	756	4,516
Low-rise/Multi/Medium Units	754	1,364	2,295	648	1,458	6,519
Residential Mixed Use	547	1,573	355	0	0	2,475
High Density	0	0	0	0	338	338
Total	7,486	12,874	12,397	5,618	14,018	52,889

As shown in Tables 3-5 and 3-6, a total of 20,781 residential dwelling units are projected to be developed within Riverview, accommodating a potential population of 52,889 people.

3.2 Riverview NBHDs 1, 2, & 3 Collector Roadway Network

The collector roadway network within Riverview has been revised since the completion of the Riverview ASP to reflect new information regarding retained natural areas and to create opportunities for a modified grid of local roadways within the residential areas. Transit looping and intersection spacing along the arterial roadways continued to be considered as the collector roadway network was revised. The following modifications from the collector roadway network originally proposed within the Riverview ASP are noted:

- As shown in **Exhibit 3-3**, a number of intersections have been relocated along 23 Avenue as compared to the Riverview ASP. The 23 Avenue/184 Street intersection has been moved to the southwest, outside of the Altalink right-of-way, to avoid existing transmission facilities. In addition to slightly increasing the distance between the Anthony Henday Drive/Cameron Heights Interchange South Ramp Intersection and 184 Street, the revision allows for greater use of the existing 184 street right of way and a perpendicular crossing of the Altalink right-of-way. West of 184 Street, a minimum spacing of 400 metres (centreline to centreline) has been provided for the majority of the intersections along the corridor. The exception is the 23 Avenue/196 Street intersection, where a minimum spacing of 340 metres has been achieved between 196 Street and Riverview Way to the east and between 196 Street and 195 Street to the west.
- A collector roadway has been identified through the town centre land uses north of 23 Avenue. This
 represents a new collector roadway east of 199 Street and a relocated collector roadway west of 199
 Street.
- The eastern north/south collector in NBHD 2 was re-aligned to provide improved connectivity between NBHD 1 to the north and NBHD 4 to the south.

Proposed 23 Avenue NW Intersection Spacing

Exhibit 3-3

N.T.S.

- A collector connection to 215 Street was eliminated north of the wetland area and a collector connection to 215 Street was added south of the wetland area with the re-alignment of Riverview Way.
- The collector network in the central portion of NBHD 3 was revised to improve connections between the transit centre/town centre and the district park site. Active modes connections between the North Saskatchewan River Valley and the town centre will continue to be provided along the previous collector alignment.

3.3 Active Transportation

3.3.1 Active Modes Network

Exhibit 3-4 illustrates the proposed active modes transportation network. The proposed network includes commuter and recreational routes providing connections to the following major destinations within and external to Riverview NBHDs 1, 2, and 3.

Within/Adjacent to Riverview

- North Saskatchewan River Valley;
- Wedgewood Creek;
- Town Centre:
- Transit Centre;
- School Sites;
- · Commercial Sites; and,
- Business Employment Area.

External to Riverview

- Cameron Heights;
- Edgemont;
- · Parkland County, and,
- TUC.

The Riverview NBHDs 1, 2, and 3 NSPs identify the following active modes transportation elements:

- Arterial Roadway Shared Use Path (SUP) City of Edmonton standard arterial roadway crosssections include a SUP on one side and a sidewalk on the other side.
- **Top-of-bank SUP** As per City policies, SUPs will be developed along the top-of-bank along the North Saskatchewan River Valley and Wedgewood Creek when new development occurs. At this time SUPs will not be developed along the top-of-bank adjacent to existing country residential subdivisions.

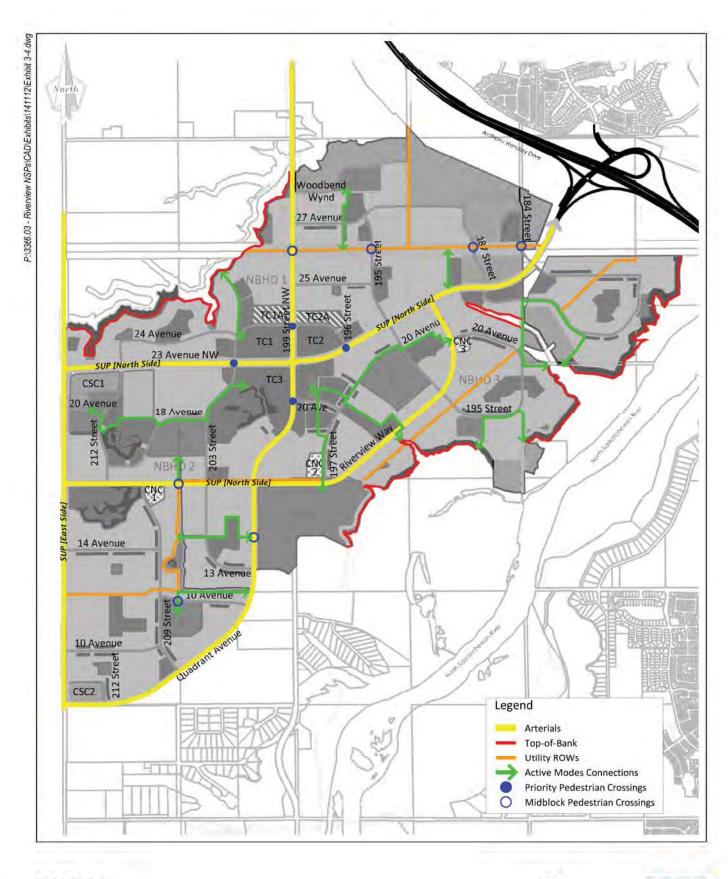


Exhibit 3-4

N.T.S.

• *Utility Right-of-Way SUP* - As per City policies, and with approval from the respective utility companies, SUPs will be developed along utility rights-of-way within the plan area.

The development of SUPs noted above will create an overall active modes network that spans Riverview NBHDs 1, 2, and 3 and also provides connections to adjacent communities. In addition to the above, SUPs will be developed along a minimum of 50% of the perimeter of storm water management facilities and within ER buffers where appropriate. The following active modes connections have been identified to take advantage of the SUPs along storm water management facilities and natural areas to broaden the overall active modes network.

Riverview NBHD 1

- The eastern north/south link utilizes a storm water management facility SUP to provide a connection between the SUP along 23 Avenue and the SUP within the Altalink ROW.
- The central north/south link provides a connection between an urban park and the SUP proposed within the Altalink right-of-way along a storm water management facility and a proposed greenway.
- The western link is proposed to connect the Wedgewood Creek top-of-bank SUP to the town centre along the west side of two storm water management facilities.

Riverview NBHD 2

- An east/west SUP connection is proposed between the town centre and the northwest commercial/residential mixed use area using SUPs along storm water management facilities, park space, natural areas, and road right-of-way.
- An east/west link is proposed between the north/south utility SUP and the district park site along a combination of greenways and a storm water management facility.
- An east/west link is proposed along one side of the east/west natural area north of 10 Avenue.
- Greenway connections are proposed to extend the north/south utility SUP to the public school site to the north and the catholic school site to the south.

Riverview NBHD 3

- Two active modes connections are identified to extend the North Saskatchewan River top-of-bank around existing country residential land uses. These are anticipated to be developed within local and/or collector road rights-of-way.
- Three active modes connections have been identified in the northwest portion of Riverview NBHD 3 to provide access to the transit centre and mixed use development area. These facilities are proposed along a combination of storm water management facilities, parks, greenways, and road right-of-way.

3.3.2 Facility Types

SUPs along arterial roadways, top-of-bank, utility rights-of-way, greenways, and storm water management facilities will be developed with a 3.0 metre paved surface. SUPs along natural areas will need to be implemented in consultation with the City of Edmonton's Parks and Biodiversity Section and may include paved or granular paths.

Active modes connections identified within local or collector roadways may include shared lanes (in-line or side-by-side), bike lanes, buffered bike lanes, and/or SUPs. The type of facility selected for these locations should consider the adjacent land use, roadway traffic volumes, and the type of facility developed along the remainder of the link. For example, the majority of the links identified within road rights-of-way represent the extension of off-street SUPs; therefore, the extension of a SUP may be appropriate for shorter segments. As well, it is noted that a key element along links within local or collector roadways is way-finding information.

Where multiple facilities can be provided within parallel rights-of-way or corridors only one facility is required to be constructed. The type of facility selected along the segment should provide a logical consistent extension of the overall active modes network.

Wherever possible, the SUPs should be extended to adjacent intersections to facilitate pedestrian crossings. However, the active modes network illustrated in Exhibit 3-4 also identifies a number of potential mid-block pedestrian crossing locations that are anticipated to be required based on the proposed alignments of SUP facilities. As well, Exhibit 3-4 identifies proposed priority pedestrian crossing locations around the town centre. This means that minimum pedestrian crossing times across 23 Avenue and 199 Street should be provided during all time periods (no pedestrian actuation).

In addition to the active modes network components identified above, sidewalks and on-street bicycle access will be available along arterial, collector, and local roadways as per existing standards.

3.4 Parking

Parking for vehicles will generally be provided off-street in accordance with the parking requirements outlined in the Edmonton Zoning Bylaw. As per the existing Zoning Bylaw, reduced parking requirements may be considered within 400 metres of the transit centre.

THIS PAGE INTENTIONALLY LEFT BLANK

4. SITE TRAFFIC CHARACTERISTICS

4.1 Trip Generation Rate Assumptions

The AM peak hour, PM peak hour, and daily trip generation rates used in the assessment are based on a combination of City of Edmonton recommended rates and trip generation rates published in the Institute of Transportation Engineers' (ITE's) Trip Generation, 9th Edition. The following sections summarize the land use category and rates selected based on the trip generating land uses anticipated to be developed within Riverview.

4.1.1 Non-Residential Land Uses

Town Centre

Trip generation for the town centre commercial and mixed use sites was developed by intersection quadrant. For example, trip generation for the town centre land uses in the northwest quadrant of the intersection (TC1 and TC1A) assumes that both sites would be constructed as one comprehensive development. Therefore, the combined total GFA was used in the trip generation calculations.

TC1 and TC1A are anticipated to include a combined total GFA of 415,200 SF. As the largest potential commercial site in Riverview, it is assumed that the site could include a mix of commercial uses anchored by a larger regional grocery store. The trip generation rates for TC1 and TC1A were based on a combination of trip rates published for City of Edmonton - Superstore/ITE LUC 813 – Free Standing Discount Superstore, City of Edmonton/ITE LUC 934 – Fast Food Restaurant with Drive-Through Window, and ITE LUC 820 – Shopping Centre. To account for synergy between the grocery store and other commercial land uses on the site, the total site area was used in the fitted curve equations for ITE LUC 820 – Shopping Centre (i.e. 415,200 SF). This resulted in reductions for synergy in the order of 7% to 9%.

TC2/TC2A are anticipated to include a combined total GFA of 341,300 SF, while TC3 is anticipated to include a total GFA of 315,900 SF. These sites are assumed to include a mix of retail land uses anchored by a grocery store. The trip generation rates for these town centre sites were based on a combination of trip rates published for ITE LUC 850 – Grocery Store, City of Edmonton/ITE LUC 934 – Fast Food Restaurant with Drive-Through Window, and ITE LUC 820 – Shopping Centre. To account for synergy between the grocery store and other commercial land uses on the sites, the total site areas were used in the fitted curve equations for ITE LUC 820 – Shopping Centre (i.e. 341,300 SF and 315,900 SF). This resulted in reductions for synergy in the order of 3% to 4%.

Community Commercial

CSC2 and CSC3 are assumed to fall within the range of sites surveyed as part of Trip Generation in Edmonton¹; therefore, the AM and PM peak hour trip rates are based on City of Edmonton measured rates. The daily rates are based on the fitted curve equation for ITE LUC 820 – Shopping Centre.

CSC1 is estimated to be in the order of 172,200 SF, which is outside of the range of sites surveyed in Edmonton; therefore, the trip generation for CSC1 is based on a combination of trip rates published for ITE LUC 850 – Grocery Store, City of Edmonton/ITE LUC 934 – Fast Food Restaurant with Drive-Through Window, and ITE LUC 820 – Shopping Centre. To account for synergy between the grocery store and other commercial land uses on the sites, the total site areas were used in the fitted curve equations for ITE LUC 820 – Shopping Centre (i.e. 172,200 SF). This resulted in reductions for synergy in the order of 5% to 6%.

Transit Centre Mixed Use

The Transit Centre Mixed Use site is estimated to include 52,700 SF of GFA. This magnitude of commercial GFA falls within the range of sites surveyed for CSC sites in Edmonton; therefore, the AM and PM peak hour trip generation rates are based on City of Edmonton measured rates for CSC sites. The daily rate is based on the fitted curve equation for ITE LUC 820 – Shopping Centre.

Neighbourhood Commercial

All of the CNC sites fall within the range of sizes included for CNC sites in Trip Generation in Edmonton; therefore, the City of Edmonton AM and PM measured trip rates were used in the assessment. The daily rates are based on the fitted curve equation for ITE LUC 820 – Shopping Centre.

Business Employment

Trip generation rates for the business employment land uses were based on published rates for ITE LUC 710 - General Office Building.

Trip generation rates for the highway commercial land uses assumed to be developed within the business employment area were based on rates published for ITE LUC 310 - Hotel and ITE LUC 841 - New Car Sales.

District Park

The district park is assumed to include a 100,000 SF recreation centre, twin ice arenas, and seven playing fields. Therefore, rates published for ITE LUC 495 - Recreational Community Centre, ITE LUC 465 -

-

¹ Bunt & Associates. 2011. Trip Generation in Edmonton: Identification of Local Trip Generation Rates for Select Residential and Commercial Land uses and A Review of Best Practices for Trip Generation Associated with Mixed-Use, Transit Oriented, and Infill Development.

Skating Rink, and ITE LUC 488 - Soccer Complex were included in the assessment. As an AM peak hour rate is not available for ITE LUC 465 - Skating Rink, a rate of 0.05 trips/seat was assumed for the arena, which assumes morning hockey practices ending during the AM peak hour.

Schools

As the peak hours of school traffic do not typically coincide with the peak hour of adjacent street traffic, no traffic is assumed to be generated by the schools in the AM or PM peak hours.

Daily trip generation rates for the high schools are based on ITE LUC 530 - High School, while daily trip generation rates for the elementary/junior high schools are based on an average of ITE LUC 520 - Elementary School and ITE LUC 522 - Middle/Junior High School.

Table 4-1 summarizes the assumed trip generation rates used in the assessment for the various non-residential land uses proposed to be developed within the Riverview ASP area.

Table 4-1: Non-Residential Trip Generation Rates

Site	Sources	AM Peak Hour	PM Peak Hour	Daily
TC1 & TC1A	City/ITE LUC 813 City/ITE LUC 934 ITE LUC 820	1.48 trips/1,000 SF	4.87 trips/1,000 SF	50.16 trips/1,000 SF
TC2 & TC2A	ITE LUC 850 City/ITE LUC 934 ITE LUC 820	1.57 trips/1,000 SF	4.87 trips/1,000 SF	58.46 trips/1,000 SF
TC3	ITE LUC 850 City/ITE LUC 934 ITE LUC 820	1.65 trips/1,000 SF	5.02 trips/1,000 SF	60.63 trips/1,000 SF
CSC1	ITE LUC 850 City/ITE LUC 934 ITE LUC 820	2.38 trips/1,000 SF	6.43 trips/1,000 SF	80.96 trips/1,000 SF
CSC2	City/ITE LUC 820	4.02 trips/1,000 SF	8.38 trips/1,000 SF	69.06 trips/1,000 SF
CSC3	City/ITE LUC 820	4.02 trips/1,000 SF	7.90 trips/1,000 SF	66.19 trips/1,000 SF
Transit Centre Mixed Use	City/ITE LUC 820	4.02 trips/1,000 SF	10.38 trips/1,000 SF	84.98 trips/1,000 SF
CNC Sites	City/ITE LUC 820	5.62 trips/1,000 SF	8.72 trips/1,000 SF to 9.69 trips/1,000 SF	107.53 trips/1,000 SF to 112.40 trips/1,000 SF
Business Employment	ITE LUC 710	0.48 trips/employee	0.46 trips/employee	3.32 trips/employee
Highway Commercial	ITE LUC 310 ITE LUC 841	0.53 trips/room 1.92 trips/1,000 SF	0.60 trips/room 2.62 trips/1,000 SF	8.17 trips/room 32.30 trips/1,000 SF
District Park	ITE LUC 495 ITE LUC 465 ITE LUC 488	2.05 trips/1,000 SF 0.05 trips/seat 1.12 trips/field	2.74 trips/1,000 0.12 trips/seat 17.70 trips/field	33.82 trips/1,000 SF 1.26 trips/seat 71.33 trips/field
High School	ITE LUC 530	N/A	N/A	1.71 trips/student
Elementary/Junior High School	ITE LUC 520 ITE LUC 522	N/A	N/A	1.46 trips/student

4.1.2 Residential Land Uses

The trip generation rates assumed for residential land uses are based on the following:

- The City's measured low density residential trip generation rates were applied to the existing and single/semi-detached residential units.
- The City's RF5 row housing trip generation rates were applied to the row housing units.
- The City's RA7 & RA8 apartment housing trip generation rates were applied to the low-rise/multi/medium density housing, the high density housing, and all residential units within the town centre and mixed use sites.

Table 4-2 summarizes the assumed trip generation rates used in the assessment for the various residential land uses proposed to be developed within Riverview.

Land Use Source **AM Peak Hour PM Peak Hour** Daily Existing and C of E 0.69 trips/du 0.79 trips/du 7.92 trips/du Single/Semi-detached **Row Housing** C of E 0.46 trips/du 0.58 trips/du 6.59 trips/du Low-rise/Multi/ C of E 0.34 trips/du 0.40 trips/du 5.81 trips/du Medium Units Residential Mixed Use C of E 0.34 trips/du 0.40 trips/du 5.81 trips/du High Density C of E 0.34 trips/du 0.40 trips/du 5.81 trips/du

Table 4-2: Residential Trip Generation Rates

4.2 Gross Trip Generation Estimates

Table 4-3 summarizes the projected two-way AM peak hour, PM peak hour, and daily vehicle trips anticipated to be generated by the Riverview ASP area upon full build out. As shown in Table 4-3, the area is anticipated to generate in the order of 18,448 two-way gross vehicle trips in the AM peak hour, 26,647 two-way gross vehicle trips in the PM peak hour, and 293,504 two-way gross vehicle trips on a typical weekday. Detailed summaries of the trip generation estimates are included in **Appendix C**.

Table 4-3: Gross Trip Generation Estimates

Londillo	Intensity	AM Pea	ık Hour	PM Peak Hour		Daily	
Land Use	(Total)	In	Out	In	Out	In	Out
Town Centre Sites	1,072,400 SF	1,023	648	2,646	2,623	29,966	29,966
CSC Sites	375,100 SF	674	550	1,334	1,422	13,823	13,823
Transit Centre Mixed Use	52,700 SF	112	100	263	284	2,239	2,239
CNC Sites	130,400 SF	403	330	592	642	7,085	7,085
Business Employment	3,200 employees	1,352	184	250	1,222	5,312	5,312
Highway Commercial	675,000 SF	451	235	387	457	5,487	5,487
District Park	163,000 SF	150	98	284	198	2,382	2,382
High School	2,350 students	0	0	0	0	2,009	2,009
Elementary/Junior High School	3,750 students	0	0	0	0	2,738	2,738
Total Non-Residential		4,165	2,145	5,756	6,848	71,041	71,041
Existing and Single/Semi- detached	13,946 du	1,828	7,794	7,382	3,636	55,226	55,226
Row Housing	1,613 du	156	586	608	327	5,315	5,315
Low-rise/Multi/ Medium Units	3,622 du	209	1,022	913	536	10,522	10,522
Residential Mixed Use	1,375 du	79	388	347	204	3,994	3,994
High Density	225 du	13	63	57	33	654	654
Total Residential	20,781 du	2,285	9,853	9,307	4,736	75,711	75,711
Total Gross Site		6,450	11,998	15,063	11,584	146,752	146,752
Generated Traffic		18,	448	26,	647	293	,504

4.3 Net Internal and External Trip Generation Estimates

The gross trip generation estimates summarized in Table 4-3 reflect all trips anticipated to access the individual land uses. Within the process used to identify the potential traffic volumes within the neighbourhood and on the adjacent arterial roadway network, a number of factors are applied to determine the potential net new traffic on the network. For example, the trips identified in Table 4-3 for commercial sites include both pass-by and primary trips, where only primary trips represent new trips on the network.

As well, the gross trips noted in Table 4-3 do not reflect the potential interaction between land uses within Riverview. Where both the origin and destination of a trip are within the study area, there is the potential to double count the trips. For example, a trip from a residence to the town centre is generated by both land uses, but ultimately represents only one trip on the network.

In addition to the above, the City of Edmonton's Transportation Master Plan: The Way We Move, focuses on increasing the use of transit and non-motorized transportation modes and decreasing passenger vehicle trips, which can be reflected in the use of mode split factors.

The following sections summarize the adjustment factors used in the assessment.

4.3.1 Non-Residential Trips

Pass-by Trips

For the purpose of this assessment, commercial trips have been divided into pass-by and primary trips. Primary trips have a destination that is the primary purpose of the trip, while pass-by trips represent an intermediate stop along the way from an origin to a primary destination. The PM peak hour pass-by trip percentages for the town centre and CSC sites are generally based on the fitted curve equation for percent pass-by trips from the ITE Trip Generation Handbook, 2nd Edition. Information is not available regarding AM peak hour or daily pass-by percentages; therefore, 20% was used in the AM peak hour for all sites and a general average of the AM and PM peak hour percentages was used for the daily trips.

Based on the application of the fitted curve equation for the CNC sites, the percent pass-by trips could range from 55% to 65%; however, to be conservative, pass-by percentages of 50% were used in the assessment for all time periods. A pass-by trip rate of 10% was assumed for the town centre mixed use site for all time periods as it is anticipated to predominantly serve surrounding residential land uses and the adjacent transit centre, rather than attract vehicle trips from the adjacent roadway network. As well, the PM peak hour and daily pass-by rates for CNC1 were reduced to 25% as future volumes along Riverview Way west of 199 Street are anticipated to be too low to support a 50% pass-by rate. **Table 4-4** summarizes the percent pass-by trips assumed for the commercial land uses.

Table 4-4: Pass-by Trip Percentages

Commercial Land Use	AM Peak Hour	PM Peak Hour	Daily
TC1 & TC1A	20%	20%	20%
TC2 & TC2A	20%	25%	25%
TC3	20%	30%	25%
CSC1	20%	35%	25%
CSC2 & CSC3	20%	40%	30%
Town Centre Mixed Use	10%	10%	10%
CNC1	50%	25%	25%
CNC Sites 2-5	50%	50%	50%

Although the hotel and car dealerships are considered commercial land uses, they are not anticipated to accommodate significant pass-by traffic.

Mode Split

The Riverview ASP area is anticipated to be serviced by bus transit, with links to the future Lewis Farms LRT station and transit centre, the Leger transit centre, and the future Heritage Valley Town Centre LRT station and transit centre. Although the LRT is not planned to extend to Riverview, the Transportation Master Plan: The Way We Move identifies a mode shift to transit and active modes as a strategic goal over the next 30 years. Based on the initiatives and strategies outlined in The Way We Move and the subsequent The Way We Move Implementation Plan, it is anticipated that the City of Edmonton will experience an overall increase in the mode split to transit as the LRT is expanded to the southeast and west, and bus transit is planned to provide connections to the LRT stations. As well, the City of Edmonton has typically assumed a 5% reduction in residential trips in the longer term as employment alternatives, such as telecommuting, become more common.

For the purpose of the assessment it is assumed that an increase in the mode split to transit and active modes would primarily impact the business employment and residential land uses. Therefore, a 5% mode split has been applied to the business employment land uses in the 2047 horizon.

In addition to the above, a mode split of 50% was assumed for the commercial component of the transit centre mixed use site. This site is anticipated to primarily provide convenience oriented services to transit centre patrons and residents of the immediately surrounding area.

Internal Versus External Non-Residential Trips

The percentage of internal trips associated with the non-residential land uses was established based on a review of the potential catchment area that may be associated with a particular land use as follows.

- It was assumed that the town centre sites located on the northeast, northwest, and southwest corners of the 23 Avenue/199 Street intersection would draw traffic from residential and employment areas within Riverview, as well as from other residential areas in West Edmonton and Parkland County within an approximate seven kilometre radius (north to Whitemud Drive). It is assumed that residents outside this assumed catchment area would have multiple other commercial opportunities within a closer proximity, reducing the attraction to the Riverview sites. It was assumed that the community commercial sites along 215 Street would primarily draw traffic from residential areas within Riverview, with some trips also being attracted from Cameron Heights, Edgemont, and Parkland County.
- All of the vehicle trips to the commercial component of the transit centre mixed use site are assumed to be drawn from the Riverview area.
- For the neighbourhood commercial sites, it was assumed that all of the primary trips would be drawn from the adjacent residential units within Riverview.
- Internal trips in the order of 10% were assumed for the business employment area to reflect the live/work/play concept that is a key focus of the Riverview ASP vision.
- It is anticipated that the highway commercial land uses may draw 10% of their traffic from within Riverview. The majority of the internal trips are assumed to be associated with the car dealerships (service centres); however, the hotel land uses are ideally located for business travellers with a destination within the business employment area.
- Based on information provided by the City of Edmonton, it is anticipated that the district park site will serve the Riverview ASP area, as well as the Edgemont and Cameron Heights neighbourhoods. Some people from Parkland County may also use the district park site on a regular basis.
- It is assumed that the high school could serve a number of areas within west Edmonton and that the elementary/junior high schools could serve the Riverview, Edgemont, and Cameron Heights neighbourhoods.

Available City of Edmonton census information and approved ASPs and NSPs were used to estimate the future population within an approximate seven kilometre radius of the town centre. As there are a number of existing and planned future commercial sites within Windermere, the catchment area for land uses within Riverview was focused north of the North Saskatchewan River. Based on the review, it is estimated that approximately 40% of the trips to the town centre sites and the high schools may be generated from within Riverview, while the remaining 60% could have an origin or destination outside of Riverview. Similarly, a review of the future populations within Riverview, Edgemont, and Cameron Heights

identified that approximately 70% of the trips generated by the community commercial, district park, and elementary/junior high schools may be generated from within Riverview. **Table 4-5** summarizes the assumed internal and external trip percentages anticipated for the non-residential land uses. A summary of the neighbourhoods and associated populations within the assumed catchment area is included in **Appendix D**.

It should be noted that these percentages were applied to the total primary trips, i.e. pass-by trips were already removed from the gross trip generation estimates.

Table 4-5: Internal and External Trip Percentages

Non-Residential Land Use	Internal	External
Town Centre	40%	60%
Community Commercial	70%	30%
Transit Centre Mixed Use	100%	0%
Neighbourhood Commercial	100%	0%
Business Employment	10%	90%
Highway Commercial	10%	90%
District Park	70%	30%
High Schools	40%	60%
Elementary/Junior High Schools	70%	30%

For the purpose of this assessment, the trips anticipated to stay within Riverview (internal trips) were assigned to the internal roadway network and were then subtracted from the trips generated by the residential land uses. In this way, trips between the different land uses within the area are accounted for on the internal roadway network but are not double counted.

Net Non-Residential Trips

The pass-by, mode split, and internal trip percentages were applied to the gross trip generation estimates to determine the net new trips anticipated to be generated by the non-residential land uses. **Table 4-6** summarizes the net non-residential site generated traffic. A detailed summary of the application of the pass-by, mode split, and internal trip percentages is included in **Appendix E**.

Table 4-6: Non-Residential Net Trip Generation

Trip Component	AM Peak Hour		PM Peak Hour		Daily	
Trip Component	In	Out	In	Out	In	Out
Total Gross Non-Residential Trips	4,165	2,145	5,756	6,848	71,041	71,041
Total Non-Auto Trips	124	59	144	203	1,385	1,385
Total Pass-by Trips	410	410	1,416	1,416	14,091	14,091
Total Internal Trips	1,320	835	2,088	2,240	26,539	26,539
Net External Trips	2,311	841	2,108	2,989	29,026	29,026

4.3.2 Residential Trips

Internal versus External Trips

The internal neighbourhood trips generated by the non-residential land uses are assumed to access the residential land uses within the Riverview ASP area. As can be determined from Table 4-6, the non-residential land uses are anticipated to generate in the order of 2,155 two-way AM peak hour internal trips, 4,328 two-way PM peak hour internal trips, and 53,078 two-way daily internal trips. The allocation of non-residential trips to the residential areas was based on the potential trip generating characteristics of the different residential land uses.

Mode Split

A 5% mode split to transit was also assumed for the residential land uses in the plan area to account for the success of the goals and strategies of the Transportation Master Plan: The Way We Move over the next 30 years.

The internal trips and mode split assumptions were applied to the gross residential trips to identify the net external vehicle trips anticipated to be generated by the residential land uses. **Table 4-7** summarizes the residential trips adjusted for internal trips and mode split and the overall total number of external trips anticipated to be generated by the Riverview ASP area.

Table 4-7: Residential Net Trip Generation

Trip Component	AM Peak Hour		PM Peak Hour		Daily	
Trip component	In	Out	In	Out	In	Out
Total Gross Residential Trips	2,285	9,853	9,307	4,736	75,711	75,711
Total Non-Auto Trips	114	493	465	237	3,786	3,786
Total Internal Trips	835	1,320	2,240	2,088	26,539	26,539
Net External Trips	1,336	8,040	6,602	2,411	45,386	45,386
% Internal Trips by Direction	37%	13%	24%	44%	35%	35%
% Internal Trips	18	3%	31%		35	5%
Total External Diversion Trins	3,647	8,881	8,710	5,400	74,412	74,412
Total External Riverview Trips	12,528		14,110		148,824	

As shown in Table 4-7, approximately 18% of the residential AM peak hour trips, 31% of the residential PM peak hour trips, and 35% of the residential daily trips are anticipated to remain within Riverview. The percent of internal residential trips by direction shows higher percentages for the off-peak direction (37% AM peak hour inbound, 44% PM peak hour outbound) which is consistent with origin-destination information available for the west suburb from the City of Edmonton's 2013 Origin-Destination Car Drive Trip Tables.

4.4 Trip Distribution

4.4.1 Non-Residential Trip Distribution

Internal Trip Distribution

The distribution of the non-residential internal trips was based on the approximate location of residential land uses within the neighbourhood.

External Trip Distribution

The distribution of external trips was primarily based on the population estimates within the assumed catchment areas as described in Section 4.3.1.

The external trips associated with the business employment and highway commercial land uses are anticipated to be distributed to all areas of the City as per the City's Origin-Destination Car Driver Trips 2013 spreadsheets. Copies of the tables are provided in **Appendix F**.

4.4.2 Residential Trip Distribution

The distribution of residential trips was based on the City of Edmonton's Origin-Destination Car Driver Trips 2013 spreadsheets, adjusted to reflect the trips anticipated to remain within Riverview as part of the west suburb. For example, of the 48% of the inbound AM peak hour trips, 37% are assumed to be from the Riverview ASP area and the reaming 11% would be from other areas within the west suburb. Subtracting out the percentage of internal trips equals a revised total external distribution of 63%. The percentages were adjusted to reflect external trips only (i.e. existing percentage multiplied by 100 and divided by 63). **Table 4-8** summarizes the revised origin-destination percentages, while **Exhibit 4-1** illustrates the overall distribution to the different sectors of the Edmonton region.

Table 4-8: Adjusted Residential Origin-Destination Percentages

Sector	AM Pea	ık Hour	PM Pea	ık Hour	Daily		
Sector	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound	
Downtown	1.4%	5.5%	4.1%	2.0%	3.1%	2.8%	
University	1.3%	4.4%	3.0%	1.3%	2.6%	2.2%	
Downtown Fringe	3.0%	4.6%	3.3%	3.4%	3.5%	3.5%	
NW Inner City	3.6%	3.8%	3.4%	4.3%	3.7%	4.0%	
NE Inner City	2.8%	2.1%	2.0%	2.7%	2.2%	2.0%	
SE Inner City	1.9%	2.2%	1.8%	1.6%	1.8%	1.8%	
SW Inner City	2.8%	3.6%	3.6%	4.1%	3.5%	4.0%	
West Inner City	14.8%	12.7%	14.1%	20.4%	18.2%	17.7%	
NW Suburb	8.4%	18.0%	16.3%	13.2%	15.5%	15.1%	
NE Suburb	3.8%	2.2%	2.0%	3.0%	2.0%	1.9%	
SE Suburb	6.5%	11.1%	8.8%	6.1%	7.1%	7.1%	
SW Suburb	9.6%	5.8%	5.8%	8.9%	7.1%	7.1%	
West Suburb	18.2%	14.2%	20.7%	9.1%	16.1%	19.0%	
Sherwood Park / Strathcona County	3.2%	1.6%	1.3%	2.2%	1.4%	1.2%	
St. Albert & Sturgeon County	8.0%	3.3%	4.4%	7.2%	5.6%	4.8%	
Leduc County	3.0%	2.2%	2.0%	2.3%	1.8%	1.5%	
Parkland County	7.7%	2.7%	3.4%	8.2%	4.8%	4.3%	
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	

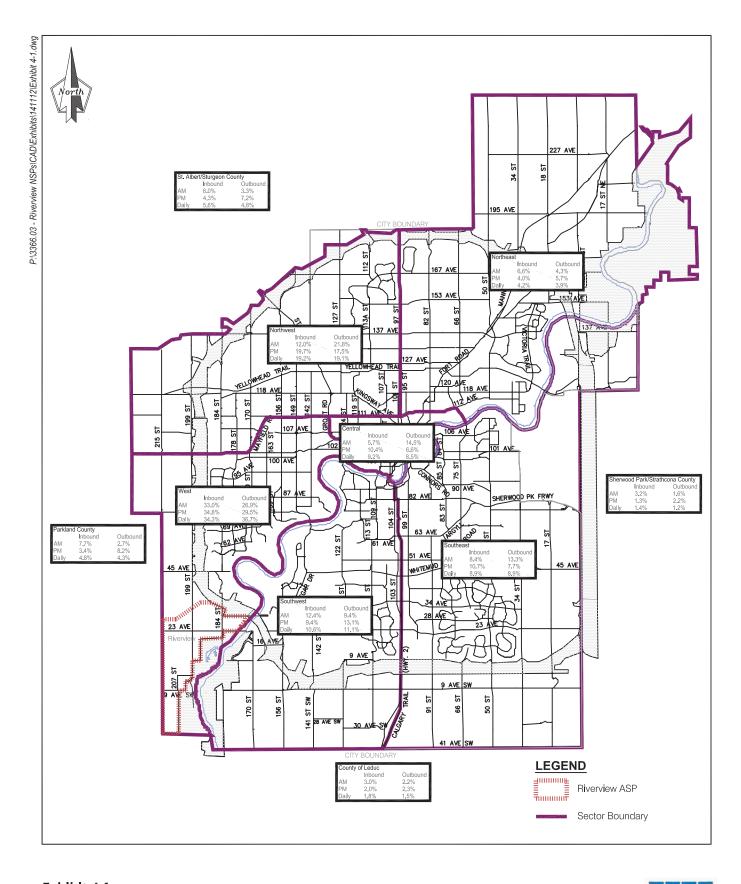
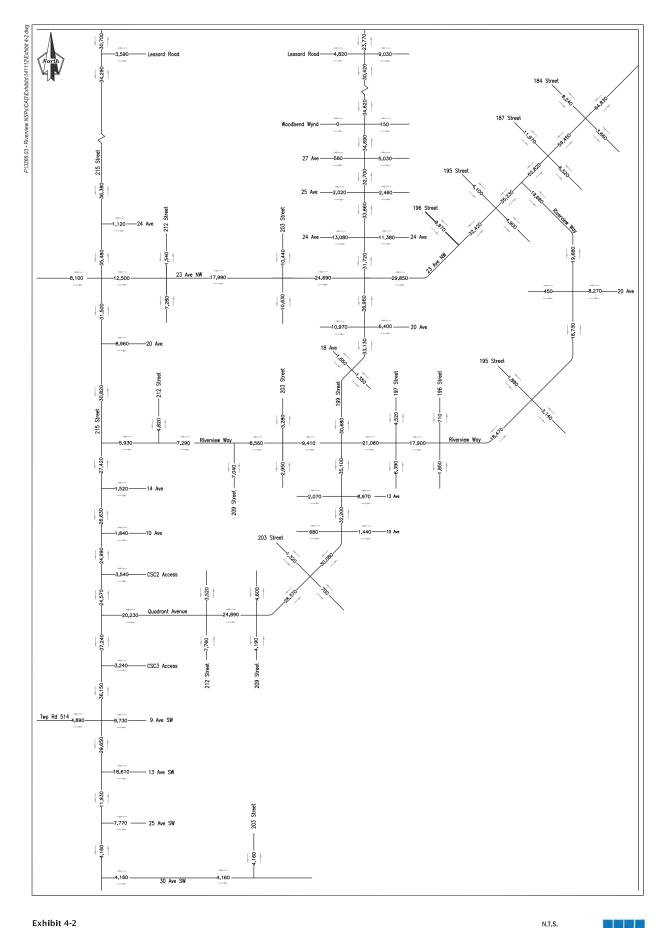


Exhibit 4-1 N.T.S.


4.5 Site Generated Traffic Volume Estimates

The traffic anticipated to be generated by the land uses within Riverview were assigned to the roadway network based on the assumed distribution and the availability of roadways and access points. **Exhibit 4-2** illustrates the daily site generated traffic volume estimates on the Riverview arterial roadway network in the 2047 horizon, while **Exhibit 4-3** illustrates the AM and PM peak hour site generated traffic volume estimates on the Riverview arterial roadway network in the 2047 horizon. **Exhibit 4-4** illustrates the site generated traffic volume estimates at the arterial/collector intersections within Riverview NBHDs 1, 2, and 3, while **Exhibit 4-5** illustrates the site generated daily volumes on the collectors and the AM and PM peak intersection volumes at the collector/collector intersections within Riverview NBHDs 1, 2, and 3.

4.6 Total Traffic Volume Estimates

The site generated traffic volumes were superimposed on the background traffic volumes to determine total traffic volumes for use in the assessment. **Exhibits 4-6** and **4-7** respectively illustrate the total daily traffic volume estimates and AM and PM peak hour traffic volume estimates on the Riverview arterial roadway network, while **Exhibit 4-8** illustrates the total arterial/collector intersection traffic volume estimates for Riverview NBHDs 1, 2, and 3 in the AM and PM peak hours. No background traffic was projected along the collector roadways within Riverview NBHDs 1, 2, and 3; therefore, Exhibit 4-5 also represents the total collector volumes within these neighbourhoods.

THIS PAGE INTENTIONALLY LEFT BLANK

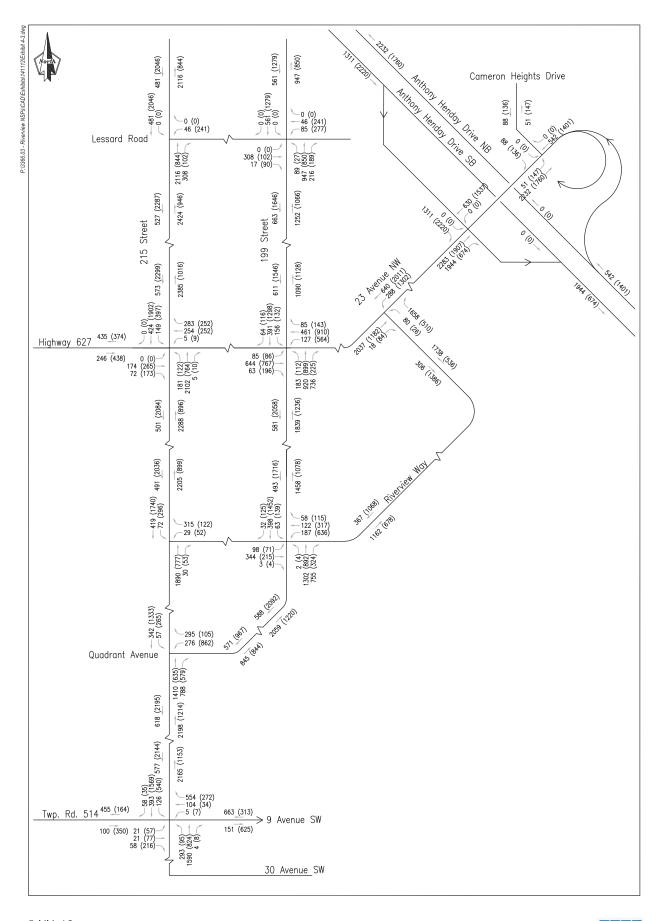


Exhibit 4-3 N.T.S.

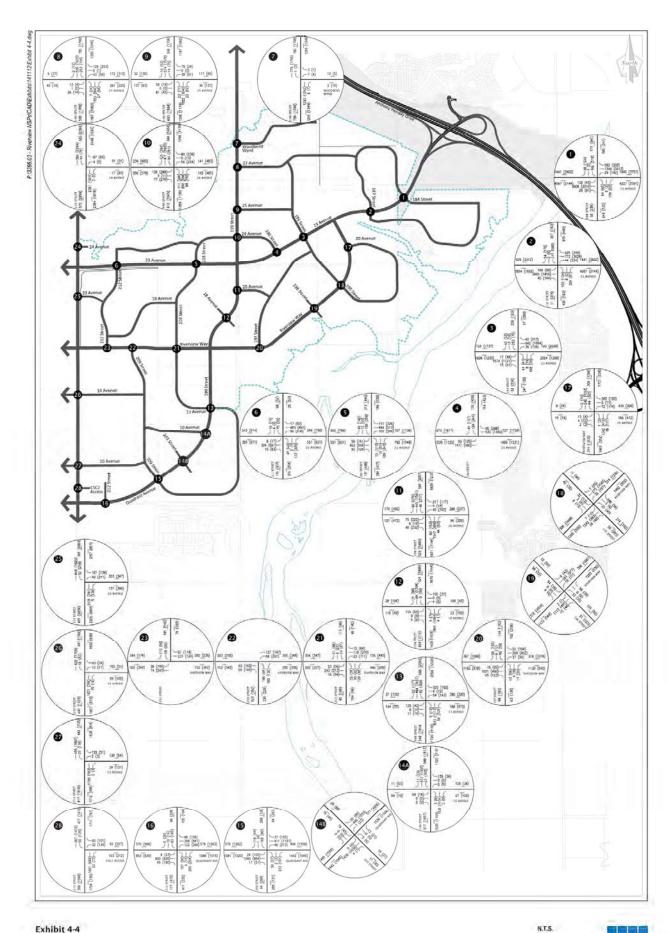


Exhibit 4-4

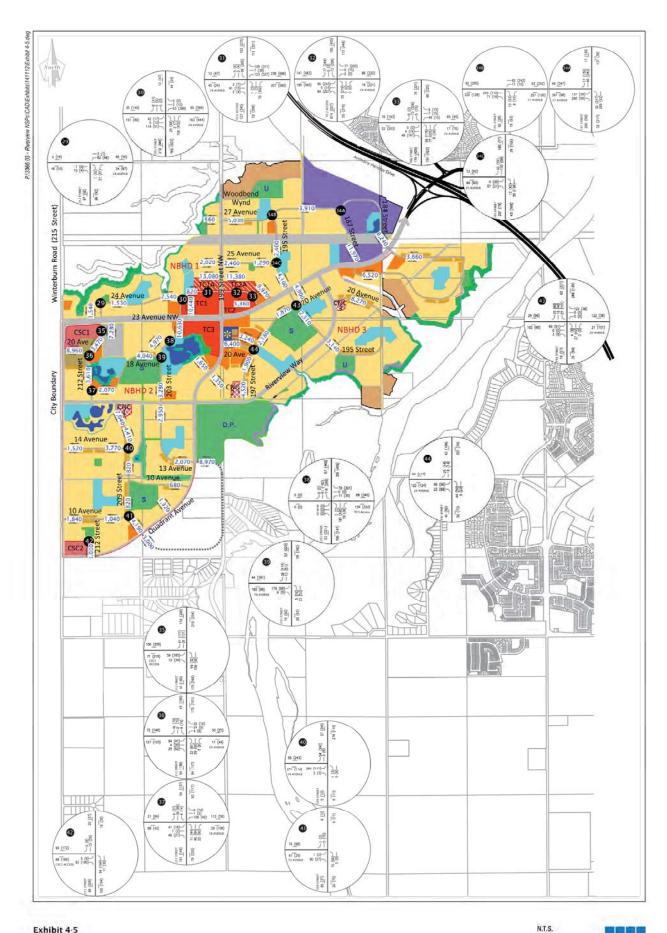


Exhibit 4-5

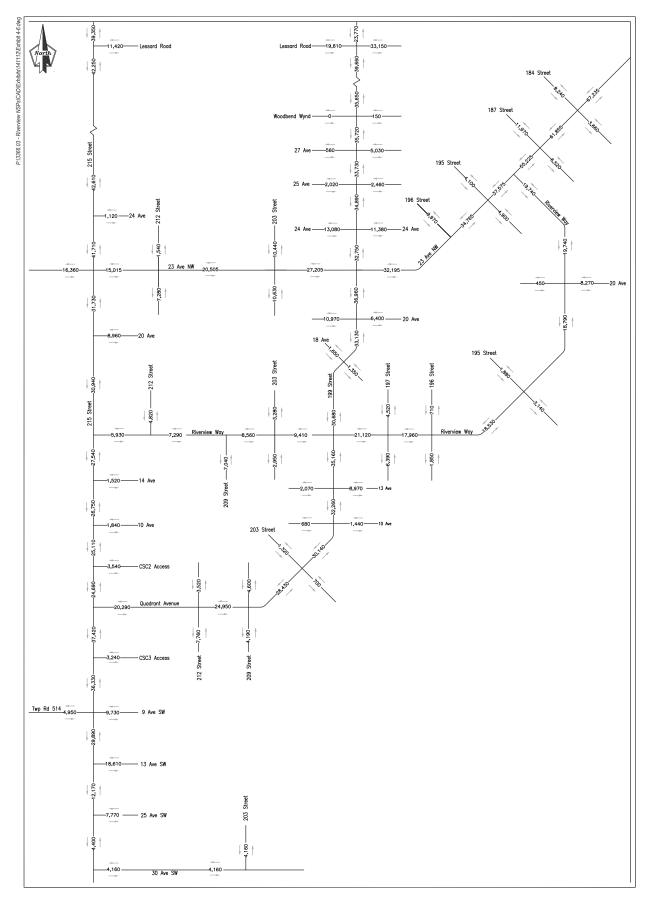


Exhibit 4-6 N.T.S.

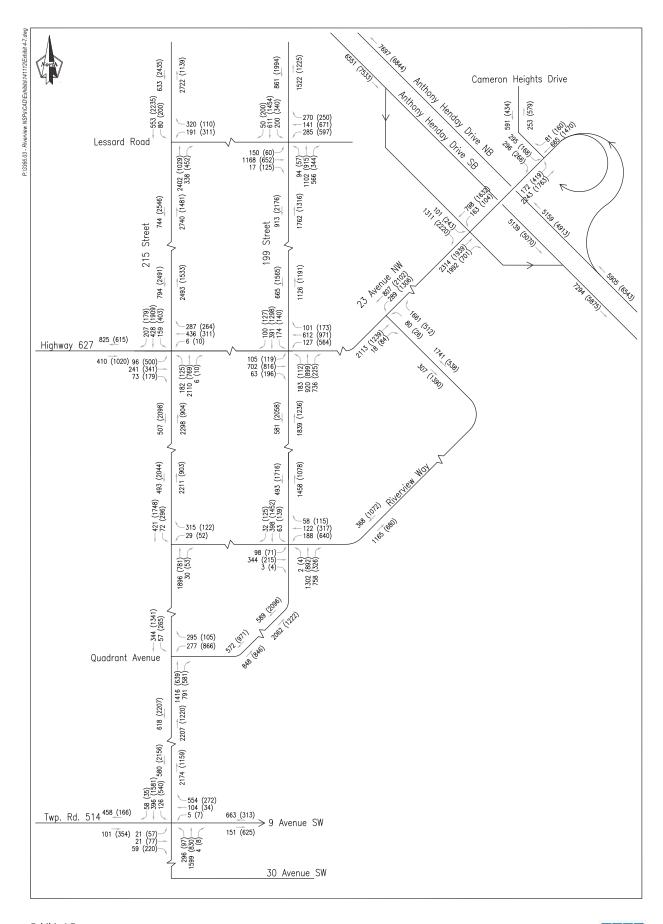
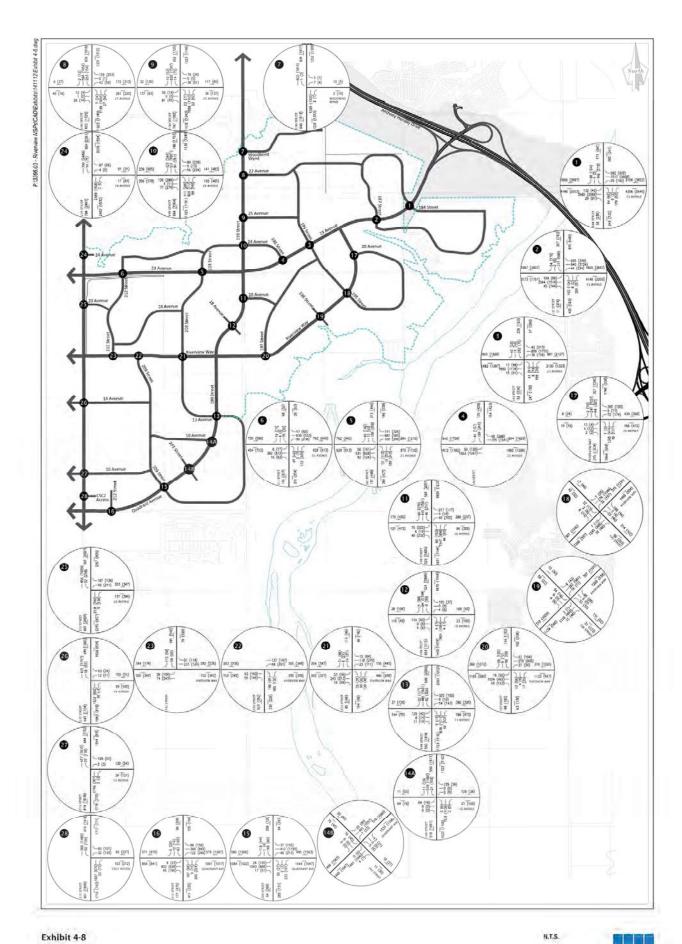



Exhibit 4-7 N.T.S.

Traffic Volume Estimates AM (PM) Peak Hours

ASP ROADWAY ASSESSMENT

5.1 Assumed Arterial Roadway Geometry

The 2047 total traffic projections outlined in Section 4.0 are lower than previously identified in the Riverview ASP TIA; therefore, it is anticipated that there is the potential to reduce arterial roadway cross-sections and intersection configuration requirements. As a starting point for the evaluation, the 2047 daily total volumes were reviewed to identify potential cross-sections along the arterial roadway network. Intersection capacity assessments were then completed for the AM and PM peak hours to identify the potential intersection configurations required to accommodate projected 2047 total peak hour turning movement volumes.

5.1.1 Assumed Arterial Roadway Cross-Sections

Table 5-1 summarizes the capacity ranges assumed to establish the potential arterial roadway requirements within Riverview. The ranges are based on typical City of Edmonton thresholds as well as a review of historic daily traffic volumes on key arterials in the City of Edmonton.

Table 5-1: Arterial Roadway Traffic Volume Ranges

Roadway Cross-Section	Projected Volume Range
Two-Lane Undivided Arterial	8,000 vpd to 12,000 vpd
Three-Lane or Four-Lane Undivided Arterial	12,000 vpd to 25,000 vpd
Four-Lane Divided Arterial	16,000 vpd to 45,000 vpd
Six-Lane Divided Arterial	45,000 vpd to 65,000 vpd

The above thresholds were used to identify the proposed cross-sections for use in the assessments. **Table 5-2** summarizes the key arterial roadway links within Riverview, the projected 2047 daily traffic volume, and the cross-section assumed as the basis for the completion of the intersection assessments.

Table 5-2: Arterial Roadway Cross-Sections

Roadway Link	From	То	Maximum Daily Volumes	Proposed Cross- Section
23 Avenue	Anthony Henday Drive	Riverview Way	67,235 vpd	> 6-In divided
23 Avenue	Riverview Way	199 Street	37,575 vpd	4-In divided
23 Avenue	199 Street	215 Street	27,205 vpd	4-In divided
Riverview Way	23 Avenue	199 Street	21,120 vpd	3-ln or 4-ln undivided
Riverview Way	199 Street	215 Street	9,410 vpd	2-ln undivided
199 Street	Wedgewood Creek	23 Avenue	35,720 vpd	4-In divided
199 Street	23 Avenue	Riverview Way	36,960 vpd	4-In divided
199 Street	Riverview Way	203 Street	35,160 vpd	4-In divided
Quadrant Avenue	203 Street	215 Street	28,430 vpd	4-In divided
215 Street	Wedgewood Creek	23 Avenue	42,610 vpd	4-In divided
215 Street	23 Avenue	Riverview Way	31,730 vpd	4-In divided
215 Street	Riverview Way	Quadrant Avenue	27,540 vpd	4-In divided
215 Street	Quadrant Avenue	13 Avenue SW	37,420 vpd	4-In divided
215 Street	13 Avenue SW	30 Avenue SW	12,170 vpd	2-In undivided

As shown in Table 5-2, the majority of the arterial roadways within Riverview could be developed as standard four-lane arterial roadways. Currently, 23 Avenue is planned to be developed as a six-lane divided arterial along its length based on its classification as a highway connector. As shown in Table 5-2, a six-lane divided arterial is anticipated to provide surplus capacity between Riverview Way and 215 Street, but is anticipated to be undersized east of Riverview Way. Based on discussions with representatives from the City of Edmonton, 23 Avenue should be developed to a maximum six-lane divided arterial cross-section. The limits of the six-lane cross-section will be confirmed through the intersection analyses.

The potential for a reduced cross-section along Riverview Way continues to be supported based on the projected daily traffic volumes. A concept plan is currently being prepared for Riverview Way based on a four-lane cross-section without turn bays, but with a wide centre median.

It is also noted that 215 Street north of 23 Avenue is projected to accommodate daily volumes within the upper limits of the threshold for a four-lane divided arterial. Within the Riverview ASP TIA, 215 Street was identified as a potential six-lane divided arterial, which is also consistent with other TIAs completed in the

area. The number of lanes required along 215 Street in the 2047 horizon will be confirmed through the completion of the peak hour intersection assessments.

5.2 Intersection Capacity Analysis Assumptions

The intersection capacity assessments are based on the methods outlined in the Highway Capacity Manual 2000, using SYNCHRO 7.0 analysis software.

The intersection operations are typically rated by two measures. The volume-to-capacity (v/c) ratio describes the extent to which the traffic volumes can be accommodated by the physical capacity of the road configuration and traffic control. A value (measured during the peak hour) less than 0.90 indicates that generally there is sufficient capacity and the projected traffic volumes can be accommodated at the intersection. A value between 0.90 and 1.0 suggests unstable operations may occur and volumes are nearing capacity conditions. A calculated value over 1.0 indicates that traffic volumes are theoretically exceeding capacity. The second measure of performance, Level of Service (LOS), is based on the estimated average delay per vehicle among all traffic passing through the intersection. A low average delay merits a LOS A rating. Average delays greater than 80 seconds per vehicle at a signalized intersection generally produce a LOS F rating, while at unsignalized intersections a LOS F is reached when vehicles experience an average delay greater than 50 seconds.

The City of Edmonton's Roadway Planning and Design Objectives (February 2005 Edition) identifies the Peak Hour LOS Design Objectives for Signalized Arterials at LOS D in the medium term and E in the long term. At signalized intersections, LOS D generally relates to v/c ratios between 0.75 and 0.90, while LOS E generally relates to v/c ratios greater than 0.9 and less than 1.0. For the purposes of this assessment, efforts were taken to meet the City's long term design objectives for signalized arterials at LOS E.

While effort was taken to meet the City's long term design objectives, some intersection movements are shown to operate with v/c ratios greater than 1.0 during the peak hours. Overall, the recommended intersection geometry selected for the key study area intersections attempts to balance the lane arrangement by volume in consideration of typical geometric configurations and traffic control utilized in Edmonton.

The anticipated 95th percentile queue length has also been included in the following assessment summaries. The queues provided may include a footnote that relates to the ability of the program to estimate the queue accurately. The 'm' footnote indicates that the volume entering the intersection is being metered by an upstream intersection. The Synchro help file also provides the following regarding the '#' footnote:

"The # footnote indicates that the volume for the 95^{th} percentile cycle exceeds capacity. This traffic was simulated for two complete cycles of 95^{th} percentile traffic to account for the effects of spill over between cycles. If the reported v/c < 1 for this movement, the methods used represent a valid method for estimating the 95^{th} percentile queue. In practice, 95^{th} percentile queue shown

will rarely be exceeded and the queues shown with the # footnote are acceptable for the design of storage bays."²

The methodology includes a number of assumptions that relate to the operating conditions present at the intersections. The following assumptions were used in the assessments.

- Saturation Flow Rate 1,900 vphg
- Minimum Lane Width 3.6 metres
- Total Lost Time Adjustment Factor- 0.5
- Peak Hour Factor 1.0
- %HV 3%

The geometry assumed for each intersection is included in the assessment tables. Left turn movements, through movements, and right turn movements are represented by "L", "T", and "R" respectively in the assessment tables, and lanes are separated by a "/". For example, an approach whose geometry is described as LT/R features two lanes: one lane accommodating shared left/through movements and a second lane accommodating right turning movements.

Traffic control information is also included in the assessment tables. Upon build-out of Riverview, all arterial/arterial intersections are assumed to be signalized. Protected only phasing was assumed for all dual left turn bays and right turns on red were not permitted for all dual right turn bays. Key signal phasing is identified in the tables, with protected/permitted left turn phasing identified by "Pm+Pt" and protected only left turn phasing identified by "Prot". Permitted and overlapped right turn phasing is identified by "Pm+Ov" and free-flow right turns are denoted by "free".

Intersection capacity assessments were completed for a number of arterial/arterial, arterial/collector, arterial/access, collector/collector, and collector/access intersections within the study area based on the 2047 total traffic volume estimates. The results of the following arterial/arterial intersections are included as part of the ASP Roadway Assessment:

- Anthony Henday Drive and Cameron Heights Interchange North Ramp
- Anthony Henday Drive and Cameron Heights Interchange South Ramp
- 23 Avenue and Riverview Way
- 23 Avenue and 199 Street
- 23 Avenue and 215 Street
- Riverview Way and 199 Street
- Riverview Way and 215 Street

- Ouadrant Avenue and 215 Street
- Twp. Rd. 514 and 215 Street
- Lessard Road and 199 Street
- Lessard Road and 215 Street

58

² Synchro 7.0, Help File, Chapter 7 - Timing/Signing Settings, Queue Lengths, pg. 7-28.

5.3 Arterial/Arterial Intersections

5.3.1 Anthony Henday Drive and Cameron Heights Interchange

The Cameron Heights interchange was constructed in 2010/2011, replacing the last at-grade signalized intersection along Anthony Henday Drive. The interchange is a trumpet design with a loop ramp in the northeast quadrant for northbound to westbound (23 Avenue to Anthony Henday Drive WB) and southbound to westbound (Cameron Heights Drive to Anthony Henday Drive WB) traffic (north ramp intersection). The south ramp intersection accommodates standard eastbound off and on ramps.

The ramp intersections are currently signalized and based on a review of the existing interchange geometry in conjunction with the Highway 216:06 Anthony Henday Drive and Cameron Heights Drive Interchange Functional Planning Study (Cameron Heights Drive Interchange FPS) prepared by Stantec in 2009, the following geometry was assumed in the assessment:

Anthony Henday Drive and Cameron Heights Interchange North Ramp Intersection

- West Approach (Cameron Heights Drive) one left turn lane, one right turn lane;
- **South Approach (23 Avenue)** one left turn bay, one shared left/through lane, one through lane; and.
- North Approach (23 Avenue) two through lanes, one channelized right turn bay.

Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection

- West Approach (Anthony Henday Drive off ramp) one left turn bay, one shared left/through lane, one channelized free flow right turn bay;
- South Approach (23 Avenue) two through lanes, one channelized right turn bay; and,
- North Approach (23 Avenue) one left turn bay, two through lanes.

Although the merge point for the eastbound right turn and the diverge point for the northbound right turn at the south ramp intersection are set back from the actual intersection, they were included in the analyses to provide an overview of the potential operations for these movements. As 23 Avenue is currently planned as a six-lane facility southwest of the interchange, the eastbound right turn is assumed to operate as a free flow lane and the northbound right turn is assumed to represent a lane drop.

Table 5-3 summarizes the results of the AM and PM peak hour assessments commented for the Anthony Henday Drive/Cameron Heights interchange north ramp intersection.

Table 5-3: Anthony Henday Drive and Cameron Heights Interchange North Ramp Intersection

	Eastbound		North	bound	Southbound		
Movement	L	R	L	Т	Т	R	
AM P	eak Hour - A	Actuated-Co	ordinated (1	20s cycle, P	m+Pt NB L)		
Geometry	L,	/R	L/L	T/T	T/ ⁻	Γ/R	
Volume (vph)	295	296	172	2243	665	81	
v/c	0.88	0.57	0.28	0.91	0.30	0.07	
Delay (s)	74.5	9.4	1.7	6.9	12.4	2.6	
LOS	E	Α	А	А	В	Α	
95 th Queue (m)	#116	25	m2	38	52	7	
Interse	ection Delay	,	13.1	Intersec	В		
PM P	eak Hour - <i>F</i>	Actuated-Cod	ordinated (1	20s cycle, P	m+Pt NB L)		
Geometry	L,	/R	L/LT/T		T/T/R		
Volume (vph)	168	266	419	1763	1470	160	
v/c	0.70	0.66	0.85	0.76	0.75	0.16	
Delay (s)	64.8	16.7	51.7	4.9	25.2	2.5	
LOS	E	В	D	А	С	Α	
95 th Queue (m)	61	33	m#133	29	165	10	
Intersection Delay			19.1	Intersec	tion LOS	В	

As shown in Table 5-3, the Anthony Henday Drive/Cameron Heights interchange north ramp intersection is anticipated to operate at acceptable levels of service based on the existing geometry and traffic control.

Table 5-4 summarizes the results of the AM and PM peak hour assessments completed for the Anthony Henday Drive/Cameron Heights interchange south ramp intersection.

Table 5-4: Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection

		Eastbound	l	North	bound	Southbound	
Movement	L	Т	R	Т	R	L	Т
AM Peak H	lour – Actu	iated-Coor	dinated (1	20s cycle,	Pm+Pt SB	L, Free EB F	₹)
Geometry		L/LT/R		T/7	Γ/R	L/T	/T
Volume (vph)	101	10*	1311	2314	1992	163	798
v/c	0.	35	0.72	0.92	1.40	0.64	0.26
Delay (s)	5.5	5.5	2.5	13.4	197.1	43.7	2.9
LOS	ŀ	Ξ	А	В	F	D	Α
95 th Queue (m)	2	5	0	m#331	m#713	#64	30
Intersec	tion Delay	,	66.2	Int	ersection l	_OS	E
PM Peak H	lour – Actu	iated-Coor	dinated (1	20s cycle,	Pm+Pt SB	L, Free EB F	R)
Geometry		L/LT/R		T/7	Γ/R	L/T/T	
Volume (vph)	243	10*	2220	1939	701	104	1632
v/c	0.	61	1.22	0.78	0.51	0.54	0.57
Delay (s)	62.6		113.9	17.4	3.0	31.1	6.0
LOS	E		F	В	Α	С	Α
95 th Queue (m)	48		#291	226	28	m25	81
Intersec	tion Delay	,	46.4	Int	ersection l	_OS	D

^{*}Movement was projected to accommodate 0 vph; a nominal 10 vph was assumed in the assessment.

As shown in Table 5-4, the Anthony Henday Drive/Cameron Heights south ramp intersection is projected to be over capacity in the AM and PM peak hours in the 2047 horizon based on the assumed geometry and traffic control. Specifically, the northbound right turn and the eastbound right turn are projected to be over capacity in the AM and PM peak hours respectively.

The northbound right turn could be improved through the development of a second right turn bay. The development of a second northbound right turn bay would require the addition of a second lane on the eastbound on-ramp. Options to improve the eastbound right turn are limited based on a maximum of six lanes along 23 Avenue downstream from the interchange; however, the provision of two stop controlled northbound right turn bays was evaluated.

Table 5-5 summarizes the results of the revised assessment for the Anthony Henday Drive/Cameron Heights Interchange South Ramp Intersection based on the addition of a second northbound right turn bay and a second eastbound right turn bay. The assessment was completed assuming the dual right turns would be banned on the red phases.

Table 5-5: Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection – Revised Assessment

	Eastbound			North	bound	Southbound	
Movement	L	Т	R	Т	R	L	Т
AM P	eak Hour -	- Actuated	d-Coordina	ted (120s d	ycle, Pm+l	Pt SB L)	
Geometry		L/LT/R/F	ł	T/T,	/R/R	L/T	/T
Volume (vph)	101	10*	1311	2314	1992	163	798
v/c	0.1	6	1.87	1.04	0.94	1.05	0.31
Delay (s)	41	.5	424.6	54.2	32.0	122.2	6.1
LOS	D)	F	D	С	F	Α
95 th Queue (m)	24	4	#289	#350	#268	#74	35
Intersect	ion Delay		115.9	Int	ersection I	LOS	F
PM P	eak Hour -	- Actuated	d-Coordina	ted (120s d	cycle, Pm+I	Pt SB L)	
Geometry		L/LT/R/F	R	T/T/	/R/R	L/T/T	
Volume (vph)	243	10*	2220	1939	701	104	1632
v/c	0.2	26	2.29	0.99	0.38	0.67	0.71
Delay (s)	36.0		606.3	47.3	17.4	46.9	16.7
LOS	D		F	D	В	D	В
95 th Queue (m)	42		#489	#290	63	m28	118
Intersect	ion Delay		217.7	Intersection LOS			D

As shown in Table 5-5, the projected operations for the dual eastbound stop control right turn bays are significantly worse than the projected operations assuming one free flow eastbound right turn bay. As well, the allocation of additional green time to the west approach decreases operations for the northbound and southbound through movements. On the south approach, the development of a second northbound right turn bay is anticipated to provide sufficient capacity to allow the movement to operate at acceptable levels of service in both the AM and PM peak hours.

Based on the operational analysis, the development of one free flow eastbound right turn bay and two northbound right turn bays is recommended. The development of the free flow eastbound right turn will also improve operations for the northbound right turn in the AM peak hour as it will allow for a reallocation of green time to the north/south movements at the intersection.

Cameron Heights Merge/Diverge and Ramp Analysis

The Cameron Heights interchange ramps and merge/diverge locations were evaluated using the methodology outlined in the Highway Capacity Manual 2010.

Based on a review of 2047 total traffic volume projections, two-lanes are required on the Anthony Henday Drive northbound on-ramp to accommodate the peak hour volumes and avoid queuing on the ramp. With a two-lane on-ramp at this location, vehicles within the merge segment along Anthony Henday Drive are projected to experience LOS C.

Acceptable levels of service are projected along Anthony Henday Drive within the northbound diverge segment during the AM and PM peak hours based a single lane off-ramp. Therefore, a single diverge lane from Anthony Henday Drive that widens as it approaches the north ramp intersection is anticipated to be appropriate.

The southbound merge segment along Anthony Henday Drive is anticipated to experience LOS C or better during the peak hours based on a single lane on-ramp. However, to avoid queuing on the ramp, a two-lane on-ramp is recommended to accommodate the AM peak hour volumes appropriately.

The Anthony Henday Drive southbound off-ramp demand exceeds the capacity of a single lane ramp; therefore, two-lanes are required for the Anthony Henday Drive southbound off-ramp. The diverge segment is estimated to experience LOS B or better during the peak hours based on a two-lane southbound off-ramp.

The implementation of two lane ramps as noted above would require modifications to the ramp-freeway junctions, which may be constrained by the bridge structures at Wedgewood Creek and the North Saskatchewan River.

As well, a review of the 2047 total traffic projections identified that Anthony Henday Drive would need to be upgraded to eight lanes upstream of the diverge points and downstream of the merge points with the Cameron Heights interchange ramps.

Based on the assessments summarized above, it is recommended that an updated functional planning study be completed for the Anthony Henday Drive/Cameron Heights interchange to identify recommended long term capacity improvements for the 23 Avenue north and south ramp intersections, as well as to identify a recommended strategy for the incorporation of two-lane northbound and southbound on- and off-ramps.

5.3.2 23 Avenue and Riverview Way

Riverview Way was incorporated into the arterial roadway network to provide an alternate east/west arterial through the plan area. The intersection geometry identified in the Riverview ASP TIA only accommodated east and west through movements, westbound left turn movements, and northbound right turn movements to better facilitate turns to/from 23 Avenue to Riverview Way. Based on discussions with the client group, options to allow for all movements at the T-intersection were explored. Full operations will better support the staged development of Riverview NBHD 3 and greatly improve way finding opportunities prior to the full development of the ASP area.

23 Avenue is planned to be developed as a six-lane divided arterial; therefore, the intersection was assumed to include the following geometry:

- West Approach three through lanes, one right turn bay;
- East Approach two left turn bays, three through lanes; and,
- South Approach one left turn bay, two right turn bays.

Overlap phasing was assumed and northbound right turns on red were prohibited in the assessment. **Table 5-6** summarizes the results of the analysis assuming all-directional operation.

Table 5-6: 23 Avenue and Riverview Way

	Eastb	ound	Westl	oound	Northbound						
Movement	Т	R	L	Т	L	R					
AM Peak Hour - Pre-timed (140s cycle, Prot WB L, Over NB R)											
Geometry	T/T/	/T/R	L/L/7	Г/Т/Т	L/R/R						
Volume (vph)	2113	18	289	807	80	1661					
v/c	0.95 0.02		0.31	0.21	0.22	1.00					
Delay (s)	50.4 17.5		47.5	13.0	48.7	57.5					
LOS	D	В	D	В	D	E					
95 th Queue (m)	#219	7	58	54	36	#294					
Interse	46.4	Intersec	D								
PM Peak Hour – Pre-timed (140s cycle, Prot WB L, Over NB R)											
Geometry	T/T/	/T/R	L/L/7	Г/Т/Т	L/R/R						
Volume (vph)	1239	84	1306	2102	26	512					
v/c	0.76	0.15	0.83	0.49	0.10	0.25					
Delay (s)	48.2	16.0	15.6	5.5	54.3	12.9					
LOS	D	В	В	Α	D	В					
95 th Queue (m)	126	20	m118	m80	16	41					
Interse	ection Delay		19.2	Intersec	tion LOS	В					

As shown in Table 5-6, the northbound right turn is projected to be at capacity in the AM peak hour. The intersection is projected to operate at acceptable levels of service in the PM peak hour based on the assumed geometry and traffic control.

The AM peak hour assessment was also completed assuming a northbound left turn is not provided at the intersection. As shown in **Table 5-7**, the intersection could operate at acceptable levels of service in the AM peak hour if the northbound left turn was not provided.

Although the intersection could accommodate slightly more traffic in the AM peak hour with a two-phase signal, the overall network benefits of providing the northbound left turn, especially in the short to medium term, are anticipated to outweigh the potential capacity improvements in the longer term. For example, the provision of the northbound left turn at 23 Avenue and Riverview Way is anticipated to reduce the magnitude of through traffic on 195 Street between Riverview Way and 23 Avenue, past the school site. Based on the assessments completed, and in consideration of the overall network implications, it is recommended that 23 Avenue and Riverview Way be developed as an all-directional T-intersection.

	Eastb	ound	Westk	oound	Northbound					
Movement	Т	R	L	Т	-	R				
AM Peak Hour - Pre-timed (120s cycle, Prot WB L, Over NB R)										
Geometry	T/T/	/T/R	L/L/7	T/T/T	R/R					
Volume (vph)	2113	18	289	807	-	1661				
v/c	0.93	0.02	0.16	0.15	-	0.94				
Delay (s)	41.7 14.3		18.0	18.0 0.1		41.3				
LOS	D	В	В	Α	-	D				
95 th Queue (m)	184	6	28	0	-	#243				
Interse	ection Delay		33.2	Intersec	tion LOS	С				

Table 5-7: 23 Avenue and Riverview Way - Revised Assessment

5.3.3 23 Avenue and 199 Street

The 23 Avenue/199 Street intersection is a key intersection within the plan area. Commercial land uses have been located on three of the four corners of the intersection providing a convenient commercial hub for residents within the neighbourhood as well as providing convenient shopping opportunities for through traffic along 23 Avenue.

The City of Edmonton is currently preparing concept plans for 23 Avenue between the Transportation Utility Corridor (TUC) and 215 Street. Based on preliminary plans, dual left turn bays were identified on all four approaches. Based on the latest 2047 total traffic projections, it is anticipated that in the 2047 horizon dual left turn bays will only be required on the east approach. As well, based on the daily volumes along the corridor, it is anticipated that 23 Avenue could be developed as a four-lane divided arterial through the 199 Street intersection.

Based on a review of initial concept plans, in combination with a review of the estimated AM and PM peak hour turning movement volumes, the following intersection geometry was assumed in the assessment:

- West Approach one left turn bay, two through lanes, one right turn bay;
- East Approach two left turn bays, two through lanes, one right turn bay;
- South Approach one left turn bay, two through lanes, one right turn bay; and,
- North Approach one left turn bay, two through lanes, one right turn bay.

Table 5-8 summarizes the results of the 23 Avenue/199 Street AM and PM peak hour intersection assessments.

Table 5-8: 23 Avenue and 199 Street

	Eastbound			Westbound			Northbound			Southbound		
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
AM Peak Hour – Pre-timed (120s cycle, Prot WB L, Pm+Pt EB, NB, & SB L, Over NB R)												
Geometry	L/T/T/R			L/L/T/T/R			L/T/T/R			L/T/T/R		
Volume (vph)	105	702	63	127	612	101	183	920	736	174	391	100
v/c	0.38	0.86	0.14	0.16	0.42	0.13	0.46	0.89	0.82	0.79	0.37	0.17
Delay (s)	17.0	45.5	8.5	48.0	13.8	7.2	27.7	53.7	29.8	71.0	30.6	11.5
LOS	В	D	Α	D	В	Α	С	D	С	Е	С	В
95 th Queue (m)	15	#78	9	27	46	10	46	#144	175	#64	40	15
Intersection Delay					35.9	Intersection LOS					D	
PN	1 Peak H	lour - Pr	e-timed	(120s c	ycle, Pro	t WB L,	Pm+Pt E	B, NB, &	SB L, Ov	er NB R)	
Geometry	L/T/T/R L/L/T/T/				/L/T/T/I	R		L/T/T/R		L/T/T/R		
Volume (vph)	119	816	196	564	971	173	112	899	225	140	1298	127
v/c	0.59	0.90	0.37	0.99	0.73	0.23	0.79	0.76	0.26	0.61	0.99	0.19
Delay (s)	23.2	34.7	6.7	68.5	26.5	5.3	69.2	56.9	16.7	24.5	57.3	14.8
LOS	С	С	Α	Е	С	Α	Е	Е	В	С	Е	В
95 th Queue (m)	m18	#125	m15	#104	144	20	#44	139	45	m32	#211	m26
Intersection Delay					42.5	Intersection LOS				D		

As shown in Table 5-8, the intersection is projected to operate at acceptable levels of service in the AM and PM peak hours under the assumed geometry and traffic control; although, a couple of movements are projected to approach capacity. Specifically, the westbound left turn and southbound through movements are projected to operate with v/c ratios of 0.99 and LOS E. Based on a review of the AM and PM peak hour volumes for these movements, additional lanes would not typically be warranted. Therefore, no geometry

improvements are currently recommended. As well, it is noted that the assessment confirmed that 23 Avenue could be developed as a four-lane divided arterial through the 199 Street intersection.

Although dual left turn bays are not anticipated to be required on the north, south, and west approaches in the 2047 horizon, it may be prudent to protect right-of-way for dual left turns on these approaches to allow flexibility in the intersection operations in the short to medium term. The 23 Avenue/199 Street intersection is a key intersection in the plan area, and traffic patterns at the intersection could fluctuate depending on how the arterial roadway network develops over time.

5.3.4 23 Avenue and 215 Street

The 23 Avenue/215 Street intersection is located on the City of Edmonton/Parkland County boundary and is anticipated to accommodate traffic generated by both jurisdictions. The geometry assumed in the assessments is based on a review of the Edgemont TIA, and a preliminary review of the potential intersection operations and includes the following:.

- West Approach two left turn bays, two through lanes, one right turn bay;
- East Approach one left turn bay, two through lanes, one right turn bay;
- South Approach one left turn bay, three through lanes, one right turn bay; and,
- North Approach two left turn bays, three through lanes, one right turn bay.

As shown in **Table 5-9**, the 23 Avenue/215 Street intersection is projected to operate at acceptable levels of service during the AM and PM peak hours based on the assumed intersection geometry and traffic control. It should be noted that pedestrian minimums were not respected for the east/west pedestrian movements across 215 Street. It is anticipated that these would be low volume movements and would be accommodated through pedestrian actuation. Alternate pedestrian crossing opportunities are anticipated to be available at the 20 Avenue/215 Street intersection.

It is also noted that the southbound through movement is projected to operate with a v/c ratio of 0.97 in the PM peak hour. A seven second northbound left turn permitted/protected phase was assumed, which reduced the capacity for the southbound through movement. If a northbound left turn phase was not provided, the northbound left turn is projected to be over capacity (v/c ratio of 2.05) while the southbound through movement would be well below capacity (v/c ratio of 0.77).

	Eastbound Westbound Northbound Southbound										1	
	L	astboun	tbound westboun		10	Northbound			Southbound			
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
AM Peak Hour – Pre-timed (120s cycle, Prot EB & SB L, Pm+Pt NB L)												
Geometry	L/L/T/T/R			L/T/T/R			L/T/T/R			L/L/T/T/T/R		
Volume (vph)	96	241	73	6	436	287	182	2110	6	159	428	207
v/c	0.48	0.19	0.11	0.02	0.50	0.55	0.33	0.87	0.01	0.80	0.18	0.23
Delay (s)	63.5	28.0	6.5	32.5	33.2	20.1	5.8	20.2	5.2	80.1	20.8	5.0
LOS	E	С	Α	С	С	С	А	С	Α	F	С	Α
95 th Queue (m)	21	31	10	m3	39	34	m12	151	m0	#39	33	6
Intersection Delay						23.7	Intersection LOS					С
	PM	1 Peak H	lour – Pr	e-timed	(120s c	ycle, Pro	t EB & S	B L, Pm+	Pt NB L)		
Geometry	L/L/T/T/T/R L/T/T/T/I				R	L	_/T/T/T/I	R	L/L/T/T/T/R			
Volume (vph)	500	341	179	10	311	264	125	769	10	403	1909	179
v/c	0.93	0.21	0.20	0.04	0.34	0.43	0.79	0.53	0.02	0.85	0.97	0.26
Delay (s)	75.7	20.7	3.7	26.9	31.7	18.4	55.3	31.1	13.8	83.1	40.0	9.9
LOS	E	С	Α	С	С	В	E	С	В	F	D	Α
95 th Queue (m)	#93	35	14	7	46	48	#49	54	m3	#77	#183	m17
Intersection Delay					40.6	Intersection LOS				D		

Table 5-9: 23 Avenue and 215 Street

5.3.5 Riverview Way and 199 Street

The Riverview Way/199 Street intersection is located centrally within Riverview with the district park site located on the southeast corner of the intersection. Based on a review of the projected peak hour turning movement volumes, and in consideration of the roadway cross-sections proposed along Riverview Way and 199 Street, the following intersection geometry was assumed in the analyses:

- West Approach one left turn bay, one shared through/right lane;
- East Approach dual left turn bays, one shared through/right lane;
- South Approach one left turn bay, two through lanes, one right turn bay; and,
- North Approach one left turn bay, two through lanes, one right turn bay.

Table 5-10 summarizes the AM and PM peak hour analyses completed for the Riverview Way/199 Street intersection. The intersection is assumed to operate as a pre-timed signal with pedestrian phases accommodated in conjunction with the main east/west and north/south signal phases.

Westbound **Eastbound** Northbound Southbound Movement L Т L Т R R L Т R AM Peak Hour - Pre-timed (120s cycle, Prot WB L) L/L/TR Geometry L/TR L/T/T/R L/T/T/R Volume (vph) 98 344 3 188 122 58 2 1302 758 63 398 32 0.33 0.74 0.72 0.27 0.00 0.79 v/c 0.69 0.53 0.21 0.04 Delay (s) 41.0 53.1 63.6 18.9 7.5 11.5 6.9 44.4 15.3 4.6 LOS D D Ε В Α В Α D В Α 95th Queue (m) 37 116 #39 33 m0 72 m26 #21 29 4 Intersection Delay 19.9 **Intersection LOS** В PM Peak Hour - Pre-timed (120s cycle, Prot WB L) L/L/TR Geometry L/TR L/T/T/R L/T/T/R Volume (vph) 71 215 4 640 317 115 4 892 326 139 1452 125 v/c 0.39 0.61 0.89 0.54 0.06 0.54 0.39 0.72 0.88 0.18 45.6 48.2 49.0 19.6 28.3 14.0 24.7 14.4 Delay (s) 21.5 1.2 D В C C LOS D D В C В Α 95th Queue (m) m30 78 #107 106 m2 124 53 m21 96 m1 **Intersection Delay** 25.1 Intersection LOS C

Table 5-10: Riverview Way and 199 Street

As shown in Table 5-10, the Riverview Way/199 Street intersection is anticipated to operate at acceptable levels of service as a signalized intersection based on the assumed geometry and traffic control.

5.3.6 Riverview Way and 215 Street

Riverview Way is proposed to tee into 215 Street forming a three-legged signalized intersection. The geometry assumed in the assessment includes the following:

- East Approach one left turn lane, one right turn bay;
- South Approach two through lanes, one right turn bay; and,
- North Approach one left turn bay, two through lanes.

As shown in **Table 5-11** the Riverview Way/215 Street intersection is anticipated to operate at acceptable levels of service in the AM and PM peak hours.

Table 5-11: Riverview Way and 215 Street

	Westh	oound	North	bound	South	bound			
Movement	L	R	Т	R	L	Т			
	AM Peak H	our – Pre-tin	ned (120s cy	/cle, Pm+Pt S	SB L)				
Geometry	L,	/R	T/ ⁻	Γ/R	L/7	Г/Т			
Volume (vph)	29	315	1896	30	72	421			
v/c	0.08	0.75	0.89	0.03	0.39	0.17			
Delay (s)	37.1	34.9	14.4	3.8	40.8	1.3			
LOS	D	С	В	А	D	А			
95 th Queue (m)	14	#72	60	m1	19	3			
Interse	ection Delay		15.6	Intersec	tion LOS	В			
	PM Peak H	our – Pre-tin	ned (120s cy	cle, Pm+Pt S	SB L)				
Geometry	L,	/R	T/~	Γ/R	L/7	Г/Т			
Volume (vph)	52	122	781	53	296	1748			
v/c	0.14	0.30	0.37	0.06	0.62	0.69			
Delay (s)	35.2	6.2	8.8	0.6	8.7	3.9			
LOS	D	Α	Α	Α	Α	Α			
95 th Queue (m)	m19	12	64	27	54				
Interse	ection Delay		6.2	Intersec	tion LOS	Α			

5.3.7 Quadrant Avenue and 215 Street

Quadrant Avenue represents the extension of 199 Street west to 215 Street. It is anticipated that the Quadrant Avenue/215 Street intersection will continue to be a T-intersection in the future. The following geometry was assumed in the assessment:

- East Approach one left turn bay, one shared left/right lane;
- South Approach two through lanes, one free flow right turn bay; and,
- North Approach one left turn bay, two through lanes.

Table 5-12 summarizes the AM and PM peak hour analyses completed for the Quadrant Avenue/215 Street intersection.

Westbound Northbound Southbound Movement L Т Т AM Peak Hour - Pre-Timed (120s cycle, Pm+Pt SB L, Free NB R) Geometry L/LR T/T/R L/T/T Volume (vph) 277 295 1416 791 57 344 0.67 0.14 v/c 0.68 0.44 0.23 Delay (s) 41.0 7.2 0.4 12.2 3.8 LOS D Α В Α Α 95th Queue (m) 70 66 0 10 10 **Intersection Delay** 11.3 **Intersection LOS** В PM Peak Hour - Pre-Timed (120s cycle, Pm+Pt SB L, Free NB R) L/LR T/T/R Geometry L/T/T Volume (vph) 866 105 639 581 265 1341 v/c 0.72 0.54 0.32 0.56 0.70 22.3 0.3 10.7 Delay (s) 41.3 9.2 C LOS D Α Α В 95th Queue (m) 100 m76 m0 19 115 18.8 **Intersection LOS** В **Intersection Delay**

Table 5-12: Quadrant Avenue and 215 Street

5.3.8 Twp. Rd. 514 and 215 Street

The Twp. Rd. 514/215 Street intersection is an existing four-legged stop-controlled intersection adjacent to the plan area. With the development of Riverview, it is anticipated that 215 Street will be upgraded to a four-lane divided arterial roadway, and Twp. Rd. 514 will be upgraded to an urban collector standard east of 215 Street (9 Avenue SW). Although it is anticipated that Twp. Rd. 514 will experience growth in traffic in the longer term, with development in the southern portion of Riverview and increased country residential development in the Woodbend area, significant improvements to Twp. Rd. 514 are not anticipated. However, any future intersection improvements at the Twp. Rd. 514/215 Street will need to include a transition along Twp. Rd. 514.

Based on a review of the projected traffic volumes, the following geometry was assumed in the analyses.

- West Approach one left turn bay, one shared through/right lane;
- East Approach one shared left/through lane, one right turn bay;
- South Approach one left turn bay, one through lane, one shared through/right lane and,
- North Approach dual left turn bays, two through lanes, one right turn bay.

As shown in **Table 5-13**, the Twp. Rd. 514/215 Street intersection is anticipated to operate at acceptable levels of service during the AM and PM peak hours in the 2047 horizon.

	E	astbour	ıd	W	estbou	nd	No	orthboun	ıd	So	uthboun	ıd	
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
		А	M Peak	Hour -	Pre-time	ed (120s	cycle, Pr	ot SB L)					
Geometry		L/TR			LT/R			L/T/TR		L	/L/T/T/R	1	
Volume (vph)	21	21	59	5	104	554	296	1599	4	126	396	58	
v/c	0.06	0.	16	0.	21	0.89	0.63	0.8	38	0.63	0.18	0.06	
Delay (s)	31.7	12	2.7	33	3.7	49.3	18.0	21	.5	67.3	7.0	2.2	
LOS	С	I	В	(2	D	В	C	:	Е	Α	Α	
95 th Queue (m)	10	1	6	3	6	#166	m57	17	'1	#27	26	0	
	Interse	ction D	elay			25.9		Inte	section	LOS		С	
PM Peak Hour - Pre-timed (120s cycle, Prot SB L)													
Geometry		L/TR			LT/R			L/T/TR		L	/L/T/T/R	1	
Volume (vph)	57	77	220	7	34	272	97	830	8	540	1581	35	
v/c	0.21	0.	81	0.	12	0.37	0.66	0.4	49	0.86	0.62	0.03	
Delay (s)	42.2	56	5.3	40).2	16.1	34.2	13	.9	60.9	11.3	2.2	
LOS	D	I	E	[)	В	С	E	3	Е	В	Α	
95 th Queue (m)	25	#1	06	1	9	48	m29	6	#93	119	3		
	Interse	ction D	elay			24.2		Inte	section	LOS		С	

Table 5-13: Twp. Rd. 514 and 215 Street

5.3.9 Lessard Road and 199 Street

The Lessard Road/199 Street intersection is located north of Riverview in the Edgemont NASP area. Lessard Road connects to Anthony Henday Drive east of 199 Street, while 199 Street continues north into The Hamptons neighbourhood. The intersection geometry assumed in the assessment generally reflects the draft concept plans with the following modifications based on the projected 2047 traffic volumes:

- The eastbound right turn is assumed to operate as a standard right turn bay as opposed to a free flow lane.
- A single northbound right turn bay was assumed; and,
- A single northbound left turn bay was assumed.

The proposed modifications reflect the 2047 model volumes, which identified lower eastbound right, northbound left, and northbound right turns than previously identified in the Riverview ASP TIA. Based on these modifications, the intersection was assumed to include the following geometry:

- West Approach one left turn bay, two through lanes, one right turn bay;
- East Approach two left turn bays, two through lanes, one right turn bay;
- South Approach one left turn bay, two through lanes, one right turn bay; and,
- North Approach two left turn bays, two through lanes, one right turn bay.

Table 5-14 summarizes the results of the AM and PM peak hour intersection assessments completed for the Lessard Road/199 Street intersection.

Table 5-14: Lessard Road and 199 Street

	E	astboun	d	W	estboun	d	No	rthboun	d	So	uthbour	ınd		
Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R		
		AM	Peak Ho	our – Pre	timed (120s cy	cle, Prot \	WB & SB	L)					
Geometry		L/T/T/R		L,	/L/T/T/F	₹		L/T/T/R		L	./L/T/T/F	}		
Volume (vph)	150	1168	17	285	141	270	94	1102	566	200	611	50		
v/c	0.39	0.99	0.03	0.98	0.08	0.29	0.37	0.93	0.80	0.87	0.38	0.07		
Delay (s)	30.7	59.2	8.9	102.3	18.8	6.9	20.8	34.1	15.3	88.7	23.6	5.7		
LOS	С	Е	Α	F	В	Α	С	С	В	F	С	Α		
95 th Queue (m)	46	#190	m5	#64	16	27	m20	#168	72	#46	64	8		
	Inters	ection D	elay		40.4		Inter	section	LOS		D			
		PM	Peak Ho	our – Pre-	120s cyc	20s cycle, Prot WB & SB L)								
Geometry		L/T/T/R		L,	/L/T/T/F	₹		L/T/T/R		L	./L/T/T/F	}		
Volume (vph)	60	652	125	597	671	250	57	915	344	340	1454	200		
v/c	0.34	0.74	0.29	0.95	0.39	0.26	0.93	0.89	0.46	0.96	0.92	0.27		
Delay (s)	41.4	43.9	33.5	74.5	22.1	2.9	120.7	29.9	3.3	93.1	42.8	7.0		
LOS	D	D	С	Е	С	Α	F	С	Α	F	D	Α		
95 th Queue (m)	24	95	36	#108	68	14	m#40	#117	5	#72	22			
	Inters	ection D	elay			39.9	39.9 Intersection LOS							

As shown in Table 5-14, the Lessard Road/199 Street intersection is anticipated to have a number of movements approaching capacity in the AM and PM peak hours in the 2047 horizon. These predominantly include dual left turns operating under protected only phasing and the opposing through movements. A northbound left turn permitted/protected phase was not assumed in the assessment as the peak hour volumes are less than 100 vph, and it would result in additional delay to the southbound through movements.

A minimum east/west split of 35 seconds was maintained to allow for pedestrian movements across 199 Street. If pedestrian actuation was assumed, additional green time could be provided to the north/south phase and protected only phases to improve vehicle operations.

5.3.10 Lessard Road and 215 Street

The Lessard Road/215 Street intersection is anticipated to be developed as a signalized T-intersection in the 2047 horizon. The assessment was completed assuming a four-lane divided cross-section is developed along 215 Street north of Wedgewood Creek; therefore, the following intersection geometry was assumed in the assessments:

- East Approach one left turn lane, one right turn lane;
- South Approach two through lanes, one right turn bay; and,
- North Approach one left turn bay, two through lanes.

As shown in **Table 5-15**, the Lessard Road/215 Street intersection is anticipated to operate at acceptable levels of service as a signalized intersection in the 2047 horizon; however, the northbound through movement is anticipated to approach capacity in the AM peak hour. There is the potential to expand to a full-six lane divided arterial cross-section if development occurs within the Enoch Cree Nation lands located west of Edmonton; however, until then, a four-lane divided arterial is recommended north of Wedgewood Creek.

	Westk	oound	North	bound	South	bound							
Movement	L	R	Т	R	L	Т							
AM Pe	eak Hour – A	ctuated - Co	ordinated (120s cycle, F	Pm+Pt SB L)								
Geometry	L/	′R	T/7	Γ/R	L/7	Г/Т							
Volume (vph)	191	320	2402	338	80	553							
v/c	0.64	0.83	0.99	0.28	0.50	0.21							
Delay (s)	51.5	43.9	29.8	0.8	24.6	5.9							
LOS	D	D	С	Α	С	А							
95 th Queue (m)	56	63	#397	m1	21	33							
Interse	ection Delay		26.0	Intersec	tion LOS	С							
PM Peak Hour - Actuated - Coordinated (120s cycle, Pm+Pt SB L)													
Geometry	L,	/R	T/7	Γ/R	L/7	Г/Т							
Volume (vph)	311	110	1029	452	200	2235							
v/c	0.79	0.24	0.52	0.39	0.49	0.89							
Delay (s)	47.7	8.5	5.8	0.8	10.7	21.7							
LOS	D	Α	Α	Α	В	С							
95 th Queue (m)	m#115	m21	m18	m0	24	247							
Interse	ection Delay		16.7	Intersec	tion LOS	В							

Table 5-15: Lessard Road and 215 Street

5.3.11 Arterial/Arterial Intersection Summary

The arterial/arterial intersection assessments confirmed the roadway cross-sections for arterial roadways within Riverview as follows:

- 23 Avenue between Anthony Henday Drive and Riverview Way is planned as a six-lane divided arterial. Based on the arterial/arterial intersection assessments completed, capacity constraints were noted at the 23 Avenue/Riverview Way intersection in the AM peak hour and at the Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection in the PM peak hour. Based on discussions with representatives from the City of Edmonton, the six-lane divided cross-section will be maintained through this segment to be consistent with the over-arching policies identified within the Transportation Master Plan: The Way We Move. Traffic congestion during peak hours is anticipated to result in an extended peak period, where people may adjust the timing of their trips to avoid congestion; increased transit ridership or car-pooling; and/or reduced trip making activity.
- 23 Avenue is anticipated to transition from a six-lane divided arterial cross-section to a four-lane arterial cross-section between Riverview Way and 199 Street . At this time, it is anticipated that the

six-lane cross-section will transition to four-lanes between Riverview Way and 195 Street; however, this will be discussed further with the arterial/collector intersection assessments.

- 23 Avenue between 199 Street and 215 Street can be developed as a four-lane divided arterial roadway.
- Riverview Way can be developed as four-lane arterial between 23 Avenue and 199 Street and can be reduced to a two-lane roadway between 199 Street and 215 Street; and,
- 215 Street should be developed as a six-lane arterial between 20 Avenue and Wedgewood Creek. 215 Street can be maintained as a four-lane divided arterial north of Wedgewood Creek until such time as development occurs on the Enoch Cree Nation lands.

The recommended arterial roadway cross-sections are summarized in **Table 5-16** and illustrated in **Exhibit 5-1**. Exhibit 5-1 also summarizes the recommended geometry and traffic control for the arterial/arterial intersections.

Table 5-16: Arterial Roadway Cross-Sections

Roadway Link	From	То	Proposed Cross- Section
23 Avenue	Anthony Henday Drive	Riverview Way	6-In divided
23 Avenue	Riverview Way	199 Street	4- or 6-In divided
23 Avenue	199 Street	215 Street	4-In divided
Riverview Way	23 Avenue	199 Street	4-In undivided without left turn bays
Riverview Way	199 Street	215 Street	2-In undivided
199 Street	Wedgewood Creek	203 Street	4-In divided
Quadrant Avenue	203 Street	215 Street	4-In divided
215 Street	Lessard Road	Wedgewood Creek	4-In divided
215 Street	Wedgewood Creek	20 Avenue	6-In divided
215 Street	20 Avenue	13 Avenue SW	4-In divided
215 Street	13 Avenue SW	30 Avenue SW	2-In undivided

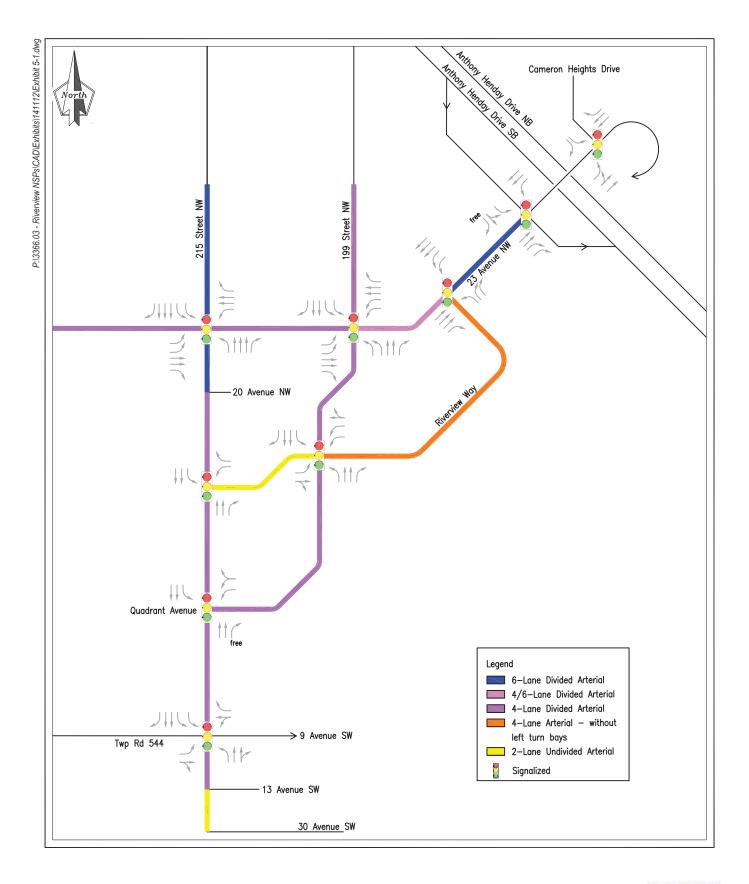


Exhibit 5-1 N.T.S.

THIS PAGE INTENTIONALLY LEFT BLANK

6. NEIGHBOURHOOD ROADWAY ASSESSMENT

6.1 Riverview NBHDs 1, 2, and 3 Collector Roadways

Residential collector roadways typically carry daily volumes in excess of 1,000 vpd and can often accommodate daily volumes in the order of 10,000 vpd. Residential collector roadways within Edmonton typically accommodate two travel lanes and two parking lanes on an 11.5 metre roadway within a 20.0 metre right-of-way. In some instances, additional roadway width is provided at the throats of collector/arterial intersections to allow for the development of appropriate lane channelization based on arterial/collector peak hour intersection assessments.

6.1.1 High Volume Collectors

The majority of the collector roadways within Riverview NBHDs 1, 2, and 3 are projected to accommodate daily volumes in the order of 5,000 vpd or less. The following collector roadways are projected to accommodate daily volumes above 5,000 vpd, and may require additional geometry at key intersections:

- The collector roadways within the business employment area are projected to accommodate between 8,240 vpd (184 Street) and 11,970 vpd (187 Street). The design of the approaches to 23 Avenue will need to reflect the projected turning movements at the intersection and appropriate intersection spacing will be required north of 23 Avenue to allow for the development of additional turn bays.
- 196 Street north of 23 Avenue, 203 Street north of 23 Avenue, and 24 Avenue east and west of 199
 Street are projected to accommodate daily volumes between 9,970 vpd and 13,080 vpd. The high
 volumes along these roadways are primarily associated with commercial land uses in the town centre.
 The development of site plans for the town centre land uses will need to include the development of
 an access management strategy along these roadways.
- 203 Street south of 23 Avenue is anticipated to accommodate in the order of 10,630 vpd. The
 majority of the traffic is associated with TC3; therefore, the design of 203 Street south of 23 Avenue
 will need to consider access opportunities to the town centre site. South of the town centre, 203
 Street is anticipated to accommodate in the order of 4,470 vpd, which can be accommodated on a
 standard collector roadway.
- 20 Avenue east of Riverview Way is projected to accommodate daily volumes in the order of 8,270 vpd, of which approximately 57% is associated with CNC3. A standard collector roadway cross-section is anticipated to be appropriate; however, access to the commercial site should be aligned with local roadway access to the north and the lane arrangement at Riverview Way should be confirmed through the intersection analysis.
- 20 Avenue east of 199 Street is anticipated to accommodate in the order of 6,400 vpd, which reflects the development of more intense land uses around the transit centre. Consideration should be given

to transit turning movements in the design of 20 Avenue immediately east of 199 Street. A standard collector would be appropriate east of the first local roadway.

- 20 Avenue west of 199 Street represents a site access to TC3. The development of on-site circulation and parking plans will need to consider the lane configuration and potential queue lengths on the west approach of the 20 Avenue/199 Street intersection.
- 20 Avenue east of 215 Street is anticipated to accommodate daily volumes in the order of 8,960 vpd and 212 Street south of 23 Avenue is anticipated to accommodate daily volumes in the order of 7,280 vpd. The traffic along these corridors is predominantly associated with CSC1; therefore, further review of the cross-sections should be completed at the zoning stage, once additional information is available regarding the land uses in the area.
- 209 Street south of Riverview Way is anticipated to accommodate in the order of 7,040 vpd. About
 60% of the traffic along 209 Street is anticipated to be associated with CNC1. A standard collector is
 anticipated to be appropriate; however, access to the commercial site should be coordinated with local
 roadway intersections to prevent the development of slightly off-site intersections. South of the
 commercial site, daily volumes are anticipated to be in the order of 4,670 vpd, which can be
 accommodated on a standard collector roadway.
- Based on the traffic volume estimates, 13 Avenue east of 199 Street is anticipated to accommodate in the order of 8,970 vpd. 13 Avenue east of 199 Street is on the boundary between NBHDs 3 and 4; however, it is anticipated to predominantly provide access to NBHD 4 land uses. The collector roadway should be reviewed in more detail with the NSP for NBHD 4.

6.1.2 Low Volume Collectors

The following collector roadways are anticipated to accommodate volumes in the order of 1,500 vpd or less.

- 212 Street north of 23 Avenue is anticipated to accommodate daily volumes in the order of 1,540 vpd and 24 Avenue east of 212 Street is anticipated to accommodate daily volumes in the order of 1,530 vpd. At this time it is anticipated that ETS may utilize these roadways for transit routes; however, if they ultimately determine that an ETS route is not required along these roadways, they can be constructed as local roadways.
- 209 Street between 10 Avenue and 14 Avenue is anticipated to accommodate daily volumes in the order of 820 vpd; however, it is anticipated to accommodate transit; therefore, a collector roadway with two travel lanes should be developed.
- Based on the daily volumes, 10 Avenue west of 199 Street is projected to accommodate in the order of 680 vpd, which could be accommodated on a local roadway. However, this roadway was designated a collector roadway to provide access to the south NBHD 2 school site; therefore, the roadway should be developed to include two travel lanes.

6.2 Riverview NBHDs 1, 2, and 3 Enhanced Local Roadways

It is estimated that local roadways can typically accommodate up to 1,500 vpd assuming they operate with a single travel lane that is used for both directions of travel. On typical 9.0 metre standard local roadways, parking is permitted on both sides, which leaves one travel lane down the centre of the roadway for vehicle travel. When opposing vehicles meet along a local roadway, one must pull over to the curb to allow the other to pass. This operation is considered acceptable in low volume situations, but as the volumes increase, two travel lanes (one in each direction) are recommended.

The following local roadway segments within NBHDs 1, 2, and 3 were identified as accommodating daily volumes greater than 1,500 vpd:

- 25 Avenue west of 199 Street; and,
- 18 Avenue west of 199 Street

Both roadways are anticipated to carry daily volumes greater than 1,500 vpd on the approach to the arterial roadway network. It is recommended that free flow two-way traffic be maintained on the approaches to the arterial.

6.3 Arterial/Collector and Arterial/Access Intersections

The recommended geometry and traffic control for the arterial/collector and arterial/access intersections were based on a review of the proposed arterial roadway cross-section, the projected AM and PM peak hour intersection turning movement volumes, and the review of v/c ratios, delays, LOS, and queue lengths at the intersections.

Traffic signals were assumed to be implemented when side street peak hour volumes were greater than a minimum of 300 vph. The City of Edmonton typically uses 400 vph as a threshold; however, unacceptable v/c ratios and delays for side street movements are often identified prior to reaching 400 vph on the side street. Where side street volumes are projected to be less than 300 vph, the intersections were initially assessed as unsignalized intersections, and the potential for future signalization was considered in the context of the overall network and other access opportunities. Where unsignalized operation continues to be recommended, high v/c ratios and long delays may be identified. It is also noted that in some instances Synchro reports "error" as a result for unsignalized intersections. This signifies that the results exceed the range of results that can be reported for a particular measure of effectiveness. While this is typically noted to reflect significant side street capacity issues, it does not in and of itself suggest signalization is warranted.

The results of the following arterial/collector intersections are included as part of the Neighbourhood Roadway Assessment:

23 Avenue Arterial/Collector Intersections

23 Avenue and 184 Street	23 Avenue and 196 Street
23 Avenue and 187 Street	23 Avenue and 203 Street
23 Avenue and 195 Street	23 Avenue and 212 Street

199 Street/Quadrant Avenue Arterial/Collector Intersections

Woodbend Wynd and 199 Street	13 Avenue and 199 Street
27 Avenue and 199 Street	10 Avenue and 199 Street
25 Avenue and 199 Street	203 Street and Quadrant Avenue
24 Avenue and 199 Street	209 Street and Quadrant Avenue
20 Avenue and 199 Street	212 Street and Quadrant Avenue
18 Avenue and 199 Street	

215 Street Arterial/Collector and Arterial/Access Intersections

24 Avenue and 215 Street	10 Avenue and 215 Street
20 Avenue and 215 Street	CSC2 Access and 215 Street
14 Avenue and 215 Street	

Riverview Way Arterial/Collector Intersections

Riverview Way and 20 Avenue	Riverview Way and 203 Street
Riverview Way and 195 Street	Riverview Way and 209 Street
Riverview Way and 196 Street	Riverview Way and 212 Street
Riverview Way and 197 Street	

6.3.1 23 Avenue Collector Intersections

As per the arterial roadway assessment, 23 Avenue is assumed to be developed as a six-lane divided arterial roadway between Anthony Henday Drive and Riverview Way and could transition to a four-lane cross-section west of Riverview Way. The results of the 23 Avenue collector intersection assessments are summarized in **Table 6-1** on the following pages.

Table 6-1: 23 Avenue NW Arterial/Collector Intersection Summaries

Overall	Delay LOS				55 1 F								55.9 E							7.77			25.6 C					20.6 D										66.2 E		_		
_					7	٠ 					4		<u>بر</u>						,	77					4	; 	1		_					<u>ن</u>					6	9	5 	
pund	W.		~	28	0.08	15.2	В	6		~	124	0.30	42.6	٥	49		~	28	0.11	16.4	В	6		~	124	0.41	45.7	D	48		R	54	0.12	10.9	В	12		~	179	0.40	26.1	
Southbound	-		L/L/TR	1						L/L/TR	2						L/L/TR	1						L/L/TR	2						L/L/TR	2						L/L/TR	9			
	_			142	0.98	135.4	F	#44			518	1.57	312.3	ъ	#143			142	0.50	52.7	Q	27			518	0.96	78.3	Е	66#			311	1.03	120.4	Ь	#19			298	1.97	>480	
	8			179	0.86	92.6		7			53		16.2		14			179	0.74	66.2		8			53	15	.1		12		(1	291	17	156.6		51		(1	87	27	12.6	
Northbound	_		L/TR	9	0.8	92	Н	46#		L/TR	2	0.21	16	В	Ţ		L/TR	9	.0	99	Е	#18		L/TR	2	0.15	12.1	В	1		L/TR (channelized)	9	1.17	15	_	#161		L/TR ^(channelized)	2	0.27	12	
2	7			64	0.34	60.2	Е	33			65	0.38	62.0	Ш	34			64	0.29	48.4	Q	28			65	0.27	43.8	D	28		/1	103	0.57	2.69	Е	20		7	104	0.64	75.9	
	~			295	0.51	3.2	Α	20			202	0.21	6.5	A	24			562	0.45	1.6	A	6			202	0.19	3.1	Α	14			625	0.53	2.0	٧	63			349	0.38	2.1	
Westbound	-	BL)	L/T/T/R	1517	0.45	15.7	В	87	/B L)	L/T/T/R	3508	1.00	41.6	۵	#373		L/T/T/R	1517	0.38	6.4	A	47		L/T/T/R	3508	0.92	21.4	С	248		L/T/T/R	940	0.27	5.8	Α	18	B & WB L)	L/T/T/R	3124	66.0	19.8	
>	7	L, Pm+Pt E		59	0.55	59.8	Е	#24	L, Pm+Pt V		142	0.63	41.4	О	47			53	0.47	36.4	D	#20	WB L)		142	0.64	33.1	С	#38	<u>(1</u>		44	0.83	102.2	F	#39	L, Pm+Pt EB & WB L)		224	0.58	35.4	
	~	cle, Prot SB		59	0.03	4.8	٧	2	ile, Prot SB		91	0.12	10.5	В	m11	(alc		29	0.03	2.6	٧	3	ile, Pm+Pt		91	0.10	4.7	Α	10	cycle, Prot SB L)		45	0.05	6.1	Α	7	cle, Prot SB		144	0.20	9.5	
Eastbound	-	ed (140s cyc	L/T/T/R	3985	1.06	74.6	Е	#438	d (140s cyc	L/T/T/R	5069	0.74	25.0	U	m112	ed (120s cyc	L/T/T/R	3985	0.99	27.7	O	#331	ed (120s cyc	L/T/T/R	5069	99.0	19.7	В	129	ed (140s cy	L/T/T/R	3544	1.00	57.2	Е	#377	ed (140s cy	L/T/T/R	1518	0.61	30.9	
	7	al - Pre-tim		132	0.53	15.1	В	19	al - Pre-time		43	0.81	74.5	В	m#19	al - Pre-time		132	0.58	20.2	O	39	al - Pre-time		43	69.0	76.5	Е	#32	al – Pre-tim		184	0.52	20.0	В	51	al – Pre-tim		68	0.74	57.1	
t)	ent	- 2044 Tot						(-)	- 2044 Tota						(-	- 2044 Tot						(-	- 2044 Tota						(- 2044 Tot						(1	- 2044 Tota					ľ
Approach	Movement	M Peak Hour	Geometry L/T/T/R L/T/	Volume (vph)	v/c Ratio	Delay (s)	SOT	95th Queue (m)	PM Peak Hour - 2044 Total - Pre-timed (140s cycle, Prot SB L, Pm+Pt WB L)	Geometry	Volume (vph)	v/c Ratio	Delay (s)	FOS	95th Queue (m)	AM Peak Hour - 2044 Total - Pre-timed (120s cycle)	eometry	Volume (vph)	v/c Ratio	Delay (s)	SOT	95th Queue (m)	M Peak Hour	Geometry	Volume (vph)	v/c Ratio	Delay (s)	TOS	95th Queue (m)	AM Peak Hour - 2044 Total – Pre-timed (140s	Geometry	Volume (vph)	v/c Ratio	Delay (s)	COS	95th Queue (m)	PM Peak Hour - 2044 Total - Pre-timed (140s cycle, Prot SB	Geometry	Volume (vph)	v/c Ratio	Delay (s)	
	Intersection		פוס	>	>	Q	23 Avenue NW LC	and 184 Street - 99	Protected SB Left PI			<u> ></u>	1.00																													
Intersection	Number																			,								2														

Table 6-1: 23 Avenue NW Arterial/Collector Intersection Summaries

Intersection		Approach		Eastbound			Westbound		_	Northbound		Southbound	õ	Overall
Number	Intersection	Movement	٦	⊥	R	1	T	R	7	T	٦	T	Delay	SOT
		AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	tal – Pre-tir	ned (120s c	ycle)									
		Geometry		L/T/T/R			L/T/T/R		ή Γ	$L/TR^{(channelized)}$		L/L/TR		
		Volume (vph)	184	3544	45	77	940	625	103	6 291	311	2 54		
		v/c Ratio	0.45	06.0	0.04	0.71	0.24	0.50	0.44	0.92	0.63	0.18	19.7	α
		Delay (s)	11.4	18.0	2.6	71.8	6.1	1.9	50.7	78.4	52.1	13.3)
	23 Avenue NW	TOS	В	В	Α	3	Α	Α	D	Е	O	В		
۲	and 187 Street -	95th Queue (m)	33	231	4	417	29	10	42	#124	51	12		
7	Permitted SB Left	Permitted SB Left PM Peak Hour - 2044 Total – Pre-timed (140s cycle, Pm+Pt EB, WB,	tal – Pre-tir	ned (140s c	ycle, Pm+P	t EB, WB, &	& SB L)							
	Turns	Geometry		L/T/T/R			L/T/T/R		Γ'	L/TR ^(channelized)		L/L/TR		
		Volume (vph)	68	1518	144	224	3124	349	104	2 87	298	6 179	Γ	
		v/c Ratio	0.74	0.61	0.20	0.54	0.97	0.38	0.64	0.29	0.94	0.42	1	C
		Delay (s)	57.8	30.9	9.2	23.4	38.4	9.6	75.9	12.6	73.2	27.9	37.4	٥
		TOS	ш	U	Α	J	О	Α	Е	В	ш	U		
		95th Queue (m)	#38	126	22	22	#304	48	#54	16	#114	49	1	
		AM Peak Hour - 2044 Total – Pre-timed (120 s cycle)	tal – Pre-tir	ned (120 s	cycle)									
		Geometry		L/T/T/R			L/T/T/R			L/TR		L/TR		
		Volume (vph)	17	1650	15	36	608	42	41	8 198	282	11 43	1	
		v/c	0.05	0.78	0.02	0.46	0.38	0.05	0.10	0.40	0.85	0.10	, 0,	٥
		Delay (s)	3.5	12.2	6.0	47.0	13.2	3.0	29.0	30.7	59.3	9.4	10.5	۵
		TOS	Α	В	А	Q	В	А	С	C	Е	А		
C	23 Avenue NW	95th Queue (m)	m1	203	0W	#19	75	2	m15	57	#116	6m		
n	and 195 Street	PM Peak Hour - 2044 Total – Pre-timed (120s	tal – Pre-tir	ned (120s c	cycle)									
		Geometry		L/T/T/R			L/T/T/R			L/TR		L/TR		
		Volume (vph)	48	1178	61	159	1755	213	41	19 70	75	16 32	1	
		v/c	0.64	0.63	80.0	0.61	0.79	0.23	0.11	0.17	0.20	0.10	7 17	٥
		Delay (s)	51.3	13.8	2.5	26.7	15.0	3.3	31.4	10.6	36.1	23.1	13.3	۵
		TOS	О	В	Α	C	В	А	C	В	D	C		
		95th Queue (m)	#32	72	2	30	186	11	m14	m13	28	m15		
		AM Peak Hour - 2044 Total – Pre-timed (120s	tal – Pre-tir	ned (120s c	cycle)									
		Geometry		L/T/T			T/T/R					L/R		
		Volume (vph)	59	1553	-	-	799	95			129	- 41		
		v/c	0.16	0.70		-	0.36	0.10		-	0.24	- 0.09	13.8	α
		Delay (s)	9.7	16.8	1	-	6.7	1.0		-	34.3	- 9.8	5:5	ם
		TOS	Α	В	1	1	А	Α			C	- A		
_	23 Avenue NW	95th Queue (m)	m8	164		1	53	0			41	- 0		
†	and 196 Street	PM Peak Hour - 2044 Total – Pre-timed (120s	tal – Pre-tir	ned (120s c	cycle, Pm+Pt EB L)	t EB L)								
		Geometry		L/T/T			T/T/R					L/R		
		Volume (vph)	135	1047		-	1541	288		-	241	- 167		
		v/c	0.84	0.47			0.81	0.34			0.45	- 0.31	19.6	α
		Delay (s)	9.69	4.2		1	25.2	11.0			38.4	- 11.6	1	a
		TOS	ш	⋖		-	U	В			۵	- B		
		95th Queue (m)	m#29	m20			m119	m33			74	- 25		

Table 6-1: 23 Avenue NW Arterial/Collector Intersection Summaries

Overall	S01				٥	۵							۵						<	τ						<	ζ		
Ove	Delay				7	11.4						, ,	7.01						O LI	r.0						c	J.9		
	W.			49	1	2					142	8	8					19							11				
Southbound	_		L/TR	13	0.11	11.2	В	13		L/TR	45	0.28	8.8	A	24		LTR	4	0.31	33.7	С	33		LTR	9	0.14	28.0	C	18
Š	1			150	0.46	37.9	D	51	•		259	0.83	58.8	Е	#108			75							35				
	~			189	3	_					243	1						172	2	3					205	7	(
Northbound	_		L/TR	19	0.33	7.1	A	21		L/TR	51	0.41	9.5	A	35		L/TR	3	0.32	8.9	A	18		L/TR	7	0.37	7.0	A	20
Z	1			52	0.12	30.0	С	19	•		113	0.28	29.6	С	36			41	0.11	33.4	С	17			42	0.12	33.4	С	17
	~			111	0.12	1.4	A	3			326	0.34	6.0	A	m0			17	0.02	0.7	Α	0			69	0.07	1.0	A	0
Westbound	_		L/T/T/R	681	0.32	10.1	В	31		L/T/T/R	585	0:30	8.0	٧	20		L/T/T/R	029	0.30	3.0	Α	17		L/T/T/R	533	0.24	4.5	٧	21
	7			102	0.22	10.5	В	13			299	0.79	31.3	С	m#58			96	0.16	3.1	Α	6			238	0.56	10.1	В	23
	æ	0s cycle)		42	0.05	2.7	Α	2	S cycle)		124	0.14	2.8	Α	11	Os cycle)		16	0.02	0.3	А	m0	0s cycle)		63	0.07	6.4	Α	m3
Eastbound	_	ned (120s c	L/T/T/R	531	0.25	8.6	Α	31	ned (120s c	L/T/T/R	628	0.32	11.8	В	63	ned (120s c	L/T/T/R	382	0.17	1.7	А	m4	ned (120s c	L/T/T/R	673	0.30	13.2	В	m44
	7	tal – Pre-tin		99	0.14	10.4	В	11	tal – Pre-tin		161	0.41	18.3	В	62	tal – Pre-tin		9	0.01	3.5	Α	0W	tal – Pre-tin		17	0.03	11.3	В	m3
Approach	Movement	AM Peak Hour - 2044 Total – Pre-timed (120	Geometry	Volume (vph)	٥//٥	Delay (s)	SOT	95th Queue (m)	PM Peak Hour - 2044 Total – Pre-timed (120	Geometry	Volume (vph)	٥//٥	Delay (s)	SOT	95th Queue (m)	AM Peak Hour - 2044 Total – Pre-timed (120	Geometry	Volume (vph)	v/c	Delay (s)	SOT	95th Queue (m)	PIM Peak Hour - 2044 Total – Pre-timed (120	Geometry	Volume (vph)	v/c	Delay (s)	SOT	95th Queue (m)
	Intersection							23 Avenue NW	and 203 Street													23 Avenue NW	and 212 Street						
Intersection	Number							L	n													·	٥						

23 Avenue and 184 Street

The 23 Avenue/184 Street intersection represents the first collector within Riverview west of Anthony Henday Drive and provides access to business employment and highway commercial land uses to the north and residential land uses to the south. Two southbound left turn bays were assumed to accommodate the projected 518 vph southbound left turn movement in the PM peak hour. The intersection was assessed with and without protected only phasing for the southbound left turn. Under both signal phasing scenarios it is anticipated that pedestrian movements would be actuated and that vehicle through movements along 23 Avenue would be given priority.

As shown in Table 6-1, the intersection is anticipated to be over-capacity during the peak hours based on the assumed geometry and traffic control. In the AM peak hour the eastbound through movement is projected to be over capacity. In the PM peak hour, the westbound through movement is projected to operate at capacity, while the southbound left is projected to be significantly over capacity. Based on a review of the traffic volumes by movement there is not a logical geometry improvement that would offset the impacts associated with protected only phasing.

If protected only phasing is not used, the intersection is projected to operate at acceptable levels of service in the AM and PM peak hours; although, the eastbound through movement is projected to approach capacity in the AM peak hour.

23 Avenue and 187 Street

The 23 Avenue/187 Street intersection provides access to residential land uses south of 23 Avenue and a combination of residential, business employment, and highway commercial land uses north of 23 Avenue. It is recommended that dual southbound left turns and a channelized northbound right turn be developed at the 23 Avenue/187 Street intersection.

The intersection assessments were completed assuming protected only phasing as well as permitted or permitted/protected phasing for the dual southbound left turn. Based on the assessments completed assuming protected only phasing for the dual southbound left turn movement, the eastbound through movement is projected to be at capacity in the AM peak hour and the westbound through movement is projected to be at capacity in the PM peak hour. As well, the southbound left turn movement is projected to be 3% to 97% over capacity in the AM and PM peak hours respectively, and the northbound right turn is projected to be 17% over capacity in the AM peak hour.

Based on the assessment assuming permitted and/or permitted/protected phasing, the intersection is projected to operate below capacity during the AM and PM peak hours.

Based on the assessments completed, the 23 Avenue/184 Street and 23 Avenue/187 Street intersections are anticipated to represent congestion points on the network. It is recommended that the signal timings prioritize 23 Avenue. As well, additional assessments could be completed when more information is available regarding the types and density of land uses that could be developed within the business

employment area. This assessment assumes a high percentage of highway commercial and office type land uses; however, light industrial or warehouse land uses may reduce the peak traffic activity at the intersections. As well, Travel Demand Management (TDM) programs that promote staggered start/end times, work at home, car-pooling, and transit usage should be promoted within the business employment area.

23 Avenue Between Riverview Way and 199 Street

The following remaining arterial/collector intersections are anticipated to operate well as signalized intersections within the 2047 horizon.

- 23 Avenue and 195 Street:
- 23 Avenue and 196 Street (T-intersection);
- 23 Avenue and 203 Street; and,
- 23 Avenue and 212 Street.

23 Avenue was assumed to be developed as a four-lane divided arterial west of Riverview Way, with left and right turn bays developed at the arterial/collector intersections. The majority of the side street approaches are assumed to be developed with two outbound lanes and one inbound lane. The outbound lanes are assumed to include a left turn bay and shared through/right lane, or left turn bay and right turn lane for T-intersections. The exception is the north approach of the 23 Avenue/212 Street intersection, which is assumed to include a shared left/through/right lane.

The assessments included a minimum north/south green time of 34 seconds, which is anticipated to exceed the potential minimum pedestrian requirements. Based on the assessments completed, pre-timed signal operations could be implemented at the above noted arterial/collector intersections to accommodate pedestrian movements across 23 Avenue.

6.3.2 199 Street/Quadrant Avenue Arterial/Collector Intersections

The majority of the collector intersections along 199 Street and Quadrant Avenue are anticipated to be signalized based on a review of the AM and PM peak hour side street volumes. The following exceptions were reviewed in more detail as the AM and PM peak hour side street volumes are projected to be less than 300 vph:

- Woodbend Wynd and 199 Street;
- 27 Avenue and 199 Street
- 25 Avenue and 199 Street;
- 18 Avenue and 199 Street;
- 10 Avenue and 199 Street; and,
- Quadrant Avenue and 203 Street.

The following summarizes the results of the assessments completed for the 199 Street/Quadrant Avenue arterial/collector intersections. Unless otherwise noted, minimum pedestrian times were accommodated for pedestrians crossing 199 Street/Quadrant Avenue. Detailed summaries are provided in **Table 6-2**.

Woodbend Wynd and 199 Street

The Woodbend Wynd/199 Street intersection is an existing unsignalized intersection that provides access to approximately 16 country residential lots. Based on the proposed NSP, there is the potential for a small pocket of redevelopment adjacent to 199 Street; however, the total number of lots accessed via Woodbend Wynd is not anticipated to generate sufficient traffic to warrant signalization. Additional pedestrian and bicycle access is provided to the south via parks, storm water management facilities, and the north/south utility right-of-way; however, vehicle access is anticipated to be limited to the 199 Street access. Based on the assessment of the intersection as an unsignalized intersection, side street movements are anticipated to experience long delays; although, the side street v/c ratios are projected to be 0.11 or less. Overall, the Woodbend Wynd/199 Street intersection is not anticipated to be a candidate for signalization in the future.

27 Avenue/199 Street

The 27 Avenue/199 Street intersection provides access to residential land uses east and west of 199 Street and also provides a secondary connection to the business employment land uses located north of 23 Avenue and west of Anthony Henday Drive. Based on a review of the projected peak hour volumes, the 27 Avenue/199 Street intersection is anticipated to be signalized. As shown in the attached tables, the intersection is anticipated to operate well as a signalized intersection in the 2047 horizon.

25 Avenue/199 Street

The total outbound volumes on the east and west approaches of the 25 Avenue/199 Street intersection are anticipated to be in the order of 254 vph in the AM peak hour and 158 vph in the PM peak hour. The eastbound and westbound left turn movements are projected to be over capacity in the PM peak hour with significant delay under stop control operation; however, the PM peak hour side street left turn volumes are 60 vph or less, which would not typically warrant signalization. Alternate access to the arterial roadway network is available via the internal collector roadways; therefore, the 25 Avenue/199 Street intersection is not anticipated to be a candidate for signalization in the 2047 horizon. However, if the intersection meets the City of Edmonton's traffic signal installation guidelines based on measured data in the future, it is appropriately spaced from 24 Avenue and 27 Avenue to allow for signalization.

Table 6-2: 199 Street Arterial/Collector Intersection Summaries

v/c Ratio - 0.07 - 0.52 0.26 0.00 0.24 Delay (s) - 33.3 - 0.0 0.0 10.9 0.0 LOS - D - A A B A 95th Queue (m) - 2 - 0 0 0 0 PM Peak Hour - 2044 Total - Unsignalized (WB Stop) - 0 0 0 0 0 0	- 0.52 0.26 0.00 - 0.0 0.0 10.9 - A A B B - A A B B - 1 - 0.0 0 0 0 - 1305 - 1305 - 0.51 0.26 0.01 - 0.51 0.26 0.01 - A A B B - A B B	- 0.52 0.26 0.00 - 0.0 0.0 10.9 - A A B B - A A B - A B - A A B - A B	- 0.52 0.26 0.00 - 0.0 0.0 10.9 - A A B - A B - D O O O O - O O O O - O O O O O - O O O O	10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 0.52 0.26 0.00 - 0.0 0.0 10.9 - A A B B - A A B - B B - C C C C C C C C C C C C C C C C C C C	- 0.52 0.26 0.00 - 0.0 0.0 10.9 - A A B B - A A B - B B - 1305 7 3 - 1305 7 3 - 1305 7 3 - 0.0 0.0 11.5 - 0.0 0.0 11.5 - A A B B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A B - A A B - A B	0.052 0.26 0.00 0.00 0.00 10.9 A A B B O 0 0 0 0 T/TR 1305 7 3 1305 7 3 0.51 0.26 0.01 0.0 0.0 11.5 A A B B A B B L/T/T/R 1189 27 253 1189 27 253 1189 27 253 0.72 0.04 0.75 16.4 5.8 50.8 B A D B A D C O O O C O C	0.052 0.26 0.00 0.00 0.00 0.00 0.00 0.00 10.9 0.00 0.00	0.052 0.26 0.00 0.0 0.0 10.9 A A B B O 0 0 0 0 T/TR 1305 7 3 1305 7 3 0.51 0.26 0.01 0.0 0.0 11.5 A A B B B A B B L/T/T/R 1189 27 253 1189 27 253 0.72 0.04 0.75 16.4 5.8 50.8 B A D B B A D B A D C C C C C C C C C C C C C C C C C C C	0.02 0.26 0.00 0.00 0.00 0.00 0.00 0.00	0.52 0.26 0.00 0.0 0.0 10.9 A A B B O 0 0 0 0 T/TR 1305 7 3 1305 7 3 0.51 0.26 0.01 0.0 0.0 11.5 A A B B B O 0 0 0 11.5 0.04 16.4 5.8 50.8 B A D D B A D B A D C 0.72 0.04 0.75 1189 27 253 1189 27 253 1189 27 253 117/T/R 16.4 5.8 50.8 B A D B A D C 0.72 0.04 0.75 10.77 R 10.5 88.3 7.0 0.5 88.3 A A A B A D C 0.72 0.04 10.75 0.05 10.77 0.05 10.70 0.59 7.0 0.59 7.0 0.59 7.0 0.59	0.52 0.26 0.00 0.00 0.00 10.9 A	0.26 0.00 0.0 10.9 A B A B O 0.0 10.9 C 0.26 0.01 0.04 0.75 S 8.8 A D M2 M70 M2 M70 C 0.07 C 0.09 C 0.007	0.26 0.00 0.0 10.9 A B A B 0.26 0.01 0.0 11.5 A B B 0 0 0 11.5 A B B 0 0 0 11.5 A D A D A D A D A D A D A D A D A D A D	0.26 0.00 0.0 10.9 A B A B 0.06 0.01 0.06 0.01 0.07 27 253 0.04 0.75 5.8 50.8 A D M2 M70 M2 M70 M2 M70 0.07 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.50 0.50	0.00 10.9 B B 0 0 0.01 11.5 B B B 0 0.75 50.8 8.3 A M70 M70 M70 M70 M6 M6 M6 M6 M6 M6 M70 M6 M6 M6 M6 M6 M6 M6 M6 M6 M6	0.00 10.9 B B 0 0.01 11.5 B B B B C 0.07 0.75 50.8 0.75 50.8 A A A A A A A A A A A A A	0.00 10.9 B B 0 0.01 11.5 B B B B C 0.07 0.075 50.8 8.3 A A A A A A A A A A A A A	0.00 10.9 8 8 8 0 0.01 11.5 8 8 0.01 11.5 8 0.75 50.8 8.3 A A Median M	0.00 10.9 8 8 0 0 0.01 11.5 8 8 8.3 A M70 m70 m6 m6 10.1 14 0.02 10.1 A A A A A A A A A A A A A
33.3 - 0.0 D - A 2 - 0	T/TR	1 - 0.0 - A - 0 - 0 0 - 0.51 - 0.51 - 0.7 - 0.6 - 0.0	1305 - 0.0 - 0.51 - 0.51 - 0.0 - 0.0 - 0.0	1 - 0.0 - A - 0.0 1 - 1305 1 - 0.51 - 0.0 - 0.0 - A - 0.0 - A - 0.0 - 1189 129 7 1189	- A A T/T/R - 1305 - 0.0	- A A - O.O	A 0 0 1305 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	A A 1305 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77/T/R 1189 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	A A O O O O O O O O O O O O O O O O O O	A A 1305 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.7	L/T/T/R 1305 0 0 1305 0.0 0 0 0 1189 0.72 16.4 B B 61 C/T/T/R 1055 0.47 7.0 A A	A A A A A A A A A A A A A A A A A A A				A A A A A A A A A A A A A A A A A A A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 Stop)		1		1 1 1 2 9			7 7 0.02 13.7 8 m2				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		╶ ┩╎┝ ╏╏╏╏ ╏┡╅		111 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A O O O O O O O O O O O O O O O O O O				
Total - Unsignalized (WB Stop)			2 LR - - 0.11 96.2 F F 3			0.26 7.5 A A 16	0.26 7.5 A A A A A A A A A A A A A A A A A A A	0.26 N.5 A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	0.26 7.5 7.5 16 0.51 C C	1 129 0.26 7.5 A 16 16	1 129 0.26 A A 16 16 253 0.51 24.5 C C 57	1	1	1	1	1	1	1	1
1 Total - Unsignalized (WB Stop)	4			LR 0.11 96.2 96.2 F F F F F F F F F F F F F F F F F F F	LR 0.11 96.2 96.2 F F F F F F F F F F F F F F F F F F F	LR 0.11 96.2 96.2 8 3 3 5* 8 5* 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LR 0.11 96.2 96.2 F F F F F F F F F F F F F F F F F F F	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 96.2 5 * 3 3 5 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	LR 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1	LR 0.11 96.2 96.2 96.2 96.2 96.2 96.2 96.2 96.2	LR 0.11 0.11 96.2 1	LR 0.11 96.2 1 9	LR 0.11 96.2 5 * 8 3 5 * 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	LR 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1
		or of change of the party of th					- - - - - - - - - -	- - - - - - - - - -	- - - - - - - - - -											
Geometry Volume (vph)	V/C Katio Delay (s) LOS	V/C ratio Delay (s) LOS 95th Queue (m)	Delay (s) LOS 95th Queue (m) AM Peak Hour - 2044 Tota	Delay (s) LOS 95th Queue (m) AM Peak Hour - 2044 Tota Geometry Volume (vph) v/c Ratio	Delay (s) LOS 95th Queue (m) AM Peak Hour - 2044 Tota Geometry Volume (vph) V/C Ratio Delay (s)	Delay (s) LOS Stratuo Delay (s) LOS Stratuo AM Peak Hour - 2044 Tota Geometry Volume (vph) V/C Ratio Delay (s) LOS LOS LOS Stratuo and Strh Queue (m)														

Table 6-2: 199 Street Arterial/Collector Intersection Summaries

Intersection		Approach		Eastbound			Westbound		Nort	Northbound		Š	Southbound		Ove	Overall
Number	Intersection	Movement	٦	T	æ	7	Т	R		_	æ	٦	L	Я	Delay	TOS
		AM Peak Hour - 2044 Total – Pre-timed (120s cycle, Prot NB & SB L)	tal – Pre-tir	ned (120s c	ycle, Prot N	B & SB L)										
_		Geometry		L/TR			L/TR		/\r\	L/L/T/T/R			L/L/T/T/R			
_		Volume (vph)	126	3	77	26	5 8	80 111		926	88	94	531	123		
_		v/c	0.34	0.	0.16	0.15	0.17	0.31		0.54	0.12	0.29	0.32	0.16	7 7 1	c
_		Delay (s)	37.0	8	8.4	33.3	8.7	0.69		4.9	0.2	42.1	14.1	5.3	T4.3	۵
_		TOS	۵	,	А	S	A	Ш		A	A	Ο	В	Α		
6	24 Avenue and	95th Queue (m)	43	1	13	22	13	m17		m21	m0	16	48	16		
Π	199 Street	PM Peak Hour - 2044 Total – Pre-timed (120s cycle, Prot NB & SB L)	tal – Pre-tir	ned (120s c	ycle, Prot N	B & SB L)						•	-	Ī		
_		Geometry		L/TR			L/TR		1/r	L/L/T/T/R			L/L/T/T/R			
_		Volume (vph)	289	11	279	234		236 281		717	193	261	1051	391		
_		\/c	0.76	0.	0.38	0.68	0.33	0.79	<u> </u>	0.58	0.31	0.63	0.80	0.56	0	(
_		Delay (s)	46.8	5	5.8	42.1	5.0	42.8		36.5	17.8	52.7	26.9	12.5	79.0	ر
_		TOS	۵		4	٥	٨	D		٥	В	٥	U	В		
_		95th Queue (m)	#107	2	23	81	19	m#49		108	m41	43	127	73		
		AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	tal – Pre-tir	ned (120s c	vcle)				┨							
_		Geometry		L/TR			L/TR		5	L/T/T/R			L/T/T/R			
_		Volume (vph)	75	9	40	40		217 80		1547	44	46	445	90		
_		v/c	0.23	0	60.0	60.0	0.44	0.16		0.76	0.05	0.52	0.22	0.10		c
_		Delay (s)	28.1	6	9.5	25.1	27.6	12.8		21.3	5.2	41.0	12.3	2.7	19.5	n
_		SOT	U		Þ	U	U	В		U	⋖	۵	В	A		
7	20 Avenue and	95th Queue (m)	24	6	6	14	26	16		148	9	#25	31	7		
11	199 Street	PM Peak Hour - 2044 Total – Pre-timed (120s cycle, Pm+Pt NB & SB L)	tal – Pre-tir	ned (120s c	ycle, Pm+Pt	NB & SB L)										
_		Geometry		L/TR			L/TR		Ų	L/T/T/R			L/T/T/R			
_		Volume (vph)	222	19	232	102	18 11	117 153		868	93	217	1561	279		
_		v/c	0.54	0.	0.42	0.35	0.23	0.89		0.52	0.12	0.67	06.0	0.36	7 2 2	Ç
_		Delay (s)	40.6	15	15.6	35.4	8.2	67.1		25.7	8.5	10.2	50.9	4.1	47.7	ر
_		SOT	۵		В	۵	A	Ш		U	⋖	В	U	A		
		95th Queue (m)	73	4	43	36	18	#29		66	19	m72	m181	m17		
		AM Peak Hour - 2044 Total – Unsignalized (E/W Stop)	tal – Unsigi	valized (E/V	V Stop)											
_		Geometry		LTR			LTR		΄,	L/T/T/R			L/T/T/R			
_		Volume (vph)	114	5*	5	4	5* 10	105 4		1451	4	19	484	21		
_		v/c		0.75			0.26	00.00		0.43	0.00	0.03	0.14	0.01	0	٥
_		Delay (s)		72.0			16.3	8.5		0.0	0.0	11.7	0.0	0.0	2	ζ
_		TOS		ч			C	A		A	4	В	A	A		
12	18 Avenue and	95th Queue (m)		37			8	0		0	0	1	0	0		
-	199 Street	PM Peak Hour - 2044 Total – Unsignalized (E,	tal – Unsigr	nalized (E/W	/W Stop)			_								
_		Geometry		LTR			-		-	L/T/T/R			L/T/T/R			
_		Volume (vph)	43	2*	9	9		37 7	_	1064	7	93	1704	66		
_		v/c		0.63			0.21	0.02		0.31	0.00	0.12	0.50	90.0	7.5	۵
_		Delay (s)		101.3			25.0	14.2		0.0	0.0	10.5	0.0	0.0	3	ζ
_		TOS		ч			D	В		A	4	В	Α	A		
		95th Queue (m)		24			9	0		0	0	3	0	0	_]	

Table 6-2: 199 Street Arterial/Collector Intersection Summaries

Intersection		Approach		Eastbound			Westbound			Northbound			Southbound		Ove	Overall
Number	Intersection	Movement	7	T	æ	٦	Т	В	L	⊢	R	L	T	R	Delay	FOS
		AM Peak Hour - 2044 Total – Pre-timed (120s cycle, Pm+Pt SB L)	tal – Pre-ti	ned (120s c	ycle, Pm+Pt	: SB L)										
		Geometry		L/TR			L/TR			L/T/T/R			L/T/T/R			
		Volume (vph)	125	8	11	54	9	320	6	1616	86	82	485	22		
		v/c	69:0	0.0	0.04	0.14	0.63	53	0.02	0.84	0.12	0.53	0.21	0.02	76.1	C
		Delay (s)	9.09	20	20.3	33.9	29.4	.4	14.9	27.1	9.1	42.4	12.8	7.2	70.7	J
		SO1	Б	O	()	J	S	, .	В	၁	Α	D	В	A		
7	13 Avenue and	95th Queue (m)	#28	8	~	21	78	8	m2	148	m16	m21	56	m1		
13	199 Street	PM Peak Hour - 2044 Total – Pre-timed (120s cycle, Pm+Pt SB L)	tal – Pre-tiı	ned (120s c	vcle, Pm+Pl	: SB L)		1								
		Geometry		L/TR			L/TR			L/T/T/R			L/T/T/R			
		Volume (vph)	42	14	14	143	12	165	16	1015	131	328	1661	107		
		v/c	0.14	0.0	90.0	0.38	0.32	32	0.16	0.68	0.20	92.0	0.73	0.11	,	ď
		Delay (s)	34.1	20	20.4	38.5	7.8	8	23.0	24.6	6.5	20.4	13.1	2.4	17.5	20
		SOT	O	U	0	Q	A	_	S	S	Α	S	В	⋖		
		95th Queue (m)	18	T	10	49	20	0	m7	112	18	m47	169	m5		
		AM Peak Hour - 2044 Total – Unsignalized (E/W Stop)	tal – Unsig	nalized (E/W	/ Stop)											
		Geometry		LTR			LTR			L/T/T/R			L/T/T/R			
		Volume (vph)	64	2*	2*	2*	2*	126	2*	1533	2*	21	518	11		
		v/c		1.53			0.63		0.00	0.45	0.00	0.05	0.15	0.01	17	Ç
		Delay (s)		>420			46.6		9.8	0.0	0.0	14.1	0.0	0.0	C'/T	ر
		SOI		Ŀ			Ш		A	A	Α	В	A	Α		
4	10 Avenue and	95th Queue (m)		57			30		0	0	0	1	0	0		
T4A	199 Street	PM Peak Hour - 2044 Total – Unsignalized (E/	tal – Unsigi	nalized (E/W	/W Stop)											
		Geometry		LTR			LTR			L/T/T/R			L/T/T/R			
		Volume (vph)	19	2*	2*	2*	2*	38	*2	1106	2*	103	1661	53		
		v/c		*			1.22		0.01	0.33	00.00	0.17	0.49	0.03	,	ı
		Delay (s)		Error			>360		14.1	0.0	0.0	12.1	0.0	0.0	102.8	_
		SOT		ъ			ч		В	A	Α	В	A	Α		
		95th Queue (m)		Error			39		0	0	0	5	0	0		
		AM Peak Hour - 2044 Total – Unsignalized (E/W Stop)	tal – Unsig	nalized (E/M	/ Stop)											
		Geometry		L/T/T/R			L/T/T/R			LTR			LTR			
		Volume (vph)	2*	1441	4	7	491	20	5	2*	13	79	2*	5*		
		v/c	00.00	0.42	0.00	0.01	0.14	0.01		0.18			0.59		3.0	⋖
		Delay (s)	8.5	0.0	0.0	12.4	0.0	0.0		40.0			57.6		}	:
		FOS	Α	Α	⋖	В	∢	Α		Н			ч			
148	Quadrant Avenue 95th Queue (m)	95th Queue (m)	0 :	0	0	0	0	0		2			24			
	and 203 Street	_	tal – Unsigi	nalized (E/W	/ stop)		1									
		Geometry		L/T/T/R			L/T/T/R			LTR			LTR			
		Volume (vph)	*2	1040	7	23	1557	80	9	2*	21	45	*2	2*		
		v/c	0.01	0.31	0.00	0.03	0.46	0.05		0.50			>2.5		23.6	ر
		Delay (s)	14.6	0.0	0.0	10.3	0.0	0.0		109.5			>1000		5)
		SOI	В	Α	٧	В	۷	A		ш			ч			
		95th Queue (m)	0	0	0	1	0	0		16			22			

Table 6-2: 199 Street Arterial/Collector Intersection Summaries

Approach	<u> </u>	Eastbound		-	Westbound		l.	puno	Н.		Southbound	H	verall	Ç
ent	_	-	~	_	-	~	-	⊢	_	_	_	<u>۳</u>	Delay	SOI
ur - 2044 T	AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	ned (120s c	(sycle)											
		L/T/T/R			L/T/T/R			L/TR			L/TR			
Volume (vph)	24	1043	17	46	412	37	20	2 233	3	169	1 1	118		
	0.04	0.46	0.05	0.17	0.18	0.04	0.14	0.46		0.67	0.23	-	15.7	۵
	7.2	8.3	2.3	19.4	16.7	10.5	34.0	21.9		53.2	7.2	1		۵
	٧	۷	۷	В	В	В	U	O		D	A			
Quadrant Avenue 95th Queue (m)	4	40	m1	23	43	10	20	20		99#	15			
ur - 2044 T	PM Peak Hour - 2044 Total – Pre-timed (120s	ned (120s c	cycle)						•			,	•	
		L/T/T/R			L/T/T/R			L/TR			L/TR			
Volume (vph)	105	998	51	213	1195	155	27	3 101	11	80	4	44		
	0.48	0.38	90.0	0.63	0.53	0.16	0.07	0.21		0.23	0.10			<
	18.8	5.5	0.7	6.6	2.8	0.3	32.7	7.8		36.0	11.8		T.0	۲
	В	۷	۷	٧	⋖	٧	U	Α		D	В			
95th Queue (m)	30	38	m1	7	15	0W	13	14		m29	m10			
our - 2044 1	AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	ned (120s c	:ycle)											
		L/T/T/R			L/T/T/R			L/TR			L/TR			
Volume (vph)	8	803	45	122	369	88	197	9 205	15	83	10	5		
	0.01	0.39	0.02	0.38	0.18	0.10	0.44	0.35		0.25	0.03	-	10.7	۵
	12.4	19.4	5.8	19.8	12.9	5.9	35.4	10.5		32.0	21.5	1	† †	۵
	В	В	٧	В	В	٧	D	В		С	С			
Quadrant Avenue 95th Queue (m)	m2	68	∞	38	35	15	61	29		29	7			
ur - 2044 T	PM Peak Hour - 2044 Total – Pre-timed (120s	ned (120s c	s cycle)						•			,	•	
		L/T/T/R			L/T/T/R			L/TR			L/TR			
Volume (vph)	23	628	190	592	845	156	96	15 224	4:	165	14	29		
	0.07	0:30	0.21	99.0	0.41	0.17	0.22	0.36		0.53	0.08	-	0	۵
	18.4	20.2	6.7	20.0	9.6	1.4	30.8	6.4		40.0	13.9	T	0.0	۵
	В	J	٧	В	٨	٧	J	Α		D	В			
95th Queue (m)	8m	29	21	59	31	2	31	21		57	11			

^{*}Movement was projected to accommodate 0 vph; a nominal 5 vph was assumed in the assessment.

24 Avenue and 199 Street

The 24 Avenue/199 Street intersection provides access to the town centre sites north of 23 Avenue. The intersection is planned to include dual left turn bays and single right turn bays on the north and south approaches along 199 Street and one left turn bay and a shared through/right lane on the east and west approaches along 24 Avenue. The provision of dual left turn bays requires the use of protected only phasing and is not anticipated to significantly increase the capacity of these left turn movements; however, it is projected to reduce the queue lengths for the movements, reducing the potential for the queue to spill out of the left turn bays. Overall, the intersection is anticipated to operate well as a signalized intersection in the 2047 horizon.

20 Avenue and 199 Street

The 20 Avenue/199 Street intersection is anticipated to operate well as a signalized intersection assuming single left and right turn bays are developed along 199 Street and a left turn bay and shared through/right lane are developed along 20 Avenue.

18 Avenue and 199 Street

The 18 Avenue/199 Street intersection is proposed as a minor secondary access to NBHD 2 and NBHD 3. The daily volumes on the side streets are anticipated to be in the order of 1,350 to 1,650 vpd; however, the link is not anticipated to be required to provide transit access in this area. Secondary access to the collector roadway network is available in the vicinity of 18 Avenue; therefore, signalization is not anticipated to be warranted in the future. As shown in Table 6-2, the analysis assumed one shared left/through/right lane on the side streets, which are anticipated to operate at or below capacity during the AM and PM peak hours with long delays.

13 Avenue and 199 Street

The 13 Avenue/199 Street intersection is anticipated to operate at acceptable levels of service in the AM and PM peak hours as a signalized intersection under the 2047 total traffic scenario. The intersection is anticipated to include single left and right turn bays along 199 Street and a left turn bay and a shared through/right lane on the east and west approaches.

10 Avenue and 199 Street

10 Avenue is planned as a low volume collector road west of 199 Street and a potential local road east of 199 Street. Left and right turn bays are assumed to be developed along 199 Street, and the side street approaches are assumed to include one shared left/through/right lane. As shown in Table 6-2, the side street movements are projected to be over capacity with high delays in the peak hours under stop control. However, based on the magnitude of the side street volumes, and the alternate access options via the internal collector roadway network, signalization is not anticipated to be warranted.

Quadrant Avenue and 203 Street

The 203 Street link provides access to a small parcel of low density residential land uses that are bounded by a natural area and a school park site to the north and northwest. Based on daily volumes in the order of 1,320 vpd, the link is anticipated to be developed as a local roadway with a shared left/through/right lane on the approach to Quadrant Avenue.

As shown in the analysis of the intersection as an unsignalized intersection, side street capacity constraints and delays are noted; however, secondary access is available to 209 Street and signalization is not anticipated to be warranted at this location in the future.

Quadrant Avenue and 209 Street

The Quadrant Avenue/209 Street intersection is anticipated to operate at acceptable levels of service in the AM and PM peak hours as a signalized intersection under the 2047 total traffic scenario. The intersection is anticipated to include single left and right turn bays along Quadrant Avenue and a left turn bay and a shared through/right lane on the north and south approaches.

Quadrant Avenue and 212 Street

The Quadrant Avenue/212 Street intersection is anticipated to operate well as a signalized intersection in the AM and PM peak hours under the 2047 total traffic scenario. The intersection is anticipated to include single left and right turn bays along Quadrant Avenue and a left turn bay and a shared through/right lane on the north and south approaches.

6.3.3 215 Street Arterial/Collector and Arterial/Access Intersections

Based on the arterial roadway analysis, 215 Street is anticipated to be developed as a six-lane arterial from approximately 20 Avenue north to Wedgewood Creek. South of 20 Avenue, 215 Street is anticipated to be developed as standard four-lane divided arterial.

Traffic signals are anticipated to be warranted at the 20 Avenue/215 Street intersection and the CSC2 site access intersection. Detailed assessment summarizes are included in **Table 6-3**.

24 Avenue and 215 Street

The configuration of Wedgewood Creek is such that there is a small pocket of developable land located in the northeast corner of the 23 Avenue/215 Street intersection. Access to the parcel is proposed via an all-directional access to 215 Street approximately 185 metres north of 23 Avenue and a local road connection to the east that parallels 23 Avenue.

Table 6-3: 215 Street Arterial/Collector Intersection Summaries

0.23	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0 0 0 1 16.9 - 1 0 0 0 1 - 1528 5 75 - 0.36 0.18 0.14 - 0.4 A B	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A C - A A C - T/T/TR - 1528 5 75 - 0.36 0.18 0.14 - 0.0 0.0 13.0 - A A B - 0.0 0.0 4	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A C - 0.0 0.0 16.9 - 0.0 0.0 13.0 - 0.36 0.18 0.14 - 0.0 0.0 13.0 - 0.0 0.0 4	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 0.0 0.0 13.0 - 1528 5 75 - 1528 5 75 - 0.36 0.18 0.14 - 0.0 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 13.0 - 0.10 0.0 0.14 - 0.10 0.0 0.0 4	161 161	26 - 1528 5 0.29 0.04 7/7/7R 26 - 1528 5 75 - 0.0 0.0 16.9 7/7/7R 26 - 1528 5 75 - 0.36 0.18 0.14 - 0.0 0.0 13.0 - 0.0 0.0 13.0 - 161 - 2136 79 52 7/7/7R 161 - 2136 79 52 7/7/7R 161 - 2136 79 52 162 - 0.90 0.08 0.84 163 - 8.0 0.5 120.7 53 - 35 m0 #39	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0.0 0.0 16.9 - A A C - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.08 0.13.0 - A A A B - A B - A A B -	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0.0 0.0 16.9 - A A A C - 1528 5 75 - 0.0 0.0 13.0 - 0.0 0.0 13.0 - 0.0 0.0 13.0 - A A B B - A A B	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0.0 0.0 16.9 - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.08 0.13.0 - A A A B - 0.0 0.0 0.0 13.0 - A A A B - 0.0 0.0 0.0 13.0 - A A A B - 0.0 0.0 0.0 13.0 - A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A A B - 0 A A B -	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.36 0.00 13.0 - A A B B - 0 0.0 0.0 13.0 - A A B B - 0 0.90 0.08 0.84 - 0 0.90 0.05 120.7 - 8.0 0.90 0.08 0.84 - A A F - A A F - A A A B - A B -	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0.0 0.0 16.9 - 1528 5 75 - 0.36 0.18 0.14 - 0.30 0.0 13.0 - A A B - A B - A A B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A A B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A A B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A A B - A B - A A B - A	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C C - 1528 5 75 - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.08 0.14 - 0 0.0 0.0 13.0 - A A A B B - 0 0.0 0.0 13.0 - 17/7/R - 0 0.0 0.0 13.0 - 13.6 79 52 - 12.36 79 52 - 0.90 0.08 0.84 - 17/7/R - 17/7/R - 17/7/R - 11.1 3.4 9.9 - 11.1 3.4 A A - B - 0.30 0.03 - 12.07 - 13.0 0.08 - 12.07 - 13.1 0.08 - 12.07 - 13.1 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.0 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08 - 13.1 0.08	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.08 0.14 - 0.0 0.0 13.0 - A A B B - 0.90 0.08 0.84 - 0.90 0.08 0.84 - 8.0 0.5 120.7 - A A A F - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - B B - A A A B - B B - A A A B - B B - A A A B - B B - A A A B - B B - A A A B - A B - A A B - B B - A A A B - A B - A B - A A B - B B - A A A B - A B - A A B - A B - A A B - A B - A B - A A B - A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A A B - A B - A A B -	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C - 0.0 0.0 16.9 - 1528 5 75 - 0.36 0.18 0.14 - 0.0 0.0 13.0 - A A B B - 0.90 0.08 0.84 - 0.90 0.08 0.84 - 8.0 0.5 120.7 - 8.0 0.5 120.7 - A A A F - 0.90 0.08 0.84 - 11.1 3.4 9.9 - 11.1 3.4 9.9 - 6.34 0.14 0.68 - 11.1 3.4 9.9 - 6.34 0.14 0.68 - 6.34 0.14 0.68 - 6.34 0.14 0.68 - 11.1 3.4 9.9 - 6.34 138 75 - 6.34 0.14 0.68 - 11.1 3.4 9.9	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - A A A C C - 1528 5 75 - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.36 0.08 13.0 - A A A B B - 0.90 0.08 0.84 - 0.90 0.08 0.84 - 177/R - 1336 79 52 - 0.90 0.08 0.84 - 177/R - 0.30 0.08 0.84 - 11.1 3.4 9.9 - 11.1 3.4 9.9 - 63 10 m9	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.30 0.0 0.0 13.0 - 0.4 A A B B - 0.30 0.08 0.84 - 0.90 0.08 0.84 - 0.90 0.08 0.84 - 17/7/R - 35 m0 #39 - 11.1 3.4 9.9 - 6.34 0.14 0.68 - 6.34 0.14 0.68 - 6.34 0.14 0.68 - 11.1 3.4 9.9 - 13.10 m9 - 13.3 10 18 - 0.54 0.01 0.06	- 0.59 0.29 0.04 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 0.0 0.0 16.9 - 1528 5 75 - 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.36 0.18 0.14 - 0.30 0.0 0.0 13.0 - 2136 79 52 - 2136 79 52 - 0.90 0.08 0.84 - 8.0 0.5 120.7 - 8.0 0.5 120.7 - 8.0 0.5 120.7 - 8.0 0.5 120.7 - 11.1 3.4 9.9 - 0.34 0.14 0.68 - 0.34 0.14 0.68 - 0.34 0.14 0.68 - 0.34 0.14 0.68 - 0.34 0.14 0.68 - 0.34 0.10 0.06 - 0.54 0.01 0.06 - 0.54 0.01 0.06	0.59 0.29 0.04 0.00 0.00 16.9 0	0.59 0.29 0.04 0.00 0.00 16.9 0	0.59 0.29 0.04 0.00 0.00 16.9 0 0 0 16.9 0 0 0 1 1528 5 75 1528 5 75 0.36 0.18 0.14 0.00 0.00 13.0 0.90 0.08 0.84 0.90 0.08 0.84 17/7	0.59 0.29 0.04 0.00 0.00 16.9 0.0 0.0 16.9 1528 5 75 1528 5 75 1528 5 75 0.36 0.18 0.14 0.0 0.0 0.13.0 0.0 0.0 0.14 0.0 0.0 0.14 0.0 0.0 0.0 177/R	0.59 0.29 0.04 0.00 0.00 16.9 0.01 0.00 16.9 1528 5 75 1528 5 75 1528 5 75 0.36 0.18 0.14 0.00 0.00 13.0 A A A F F A B B A A F F A B B A A B B B A A A B B A A B B B A A B B B A A A B B B A A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B A A B B B B A B B B B A B
0.23	- 0.59 - 0.0 - A - 0 - 0 - 1528 - 0.36 - 0.36 - 0.36	- 0.59 - 0.0 - A - 0 - 0 - 1528 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36	- 0.59 - 0.0 - A - 0 - 0 - 1528 - 0.36 - 0.36 - 0.0 - 0.0	- 0.59 - 0.0 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.36 - 0.36 - 0.36 - 1548 - 1548 - 161 - 161 - 2136	- 0.59 - 0.0 - A A - 0.0 - A A - 0.0 - 1528 - 1528 - 0.36 - 0.37/R	- 0.59 - 0.0 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.36 - 0.37 - 0.90 - 0.42 - 0.90 - 0.42 - 0.90	- 0.59 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.0 - A A - 0 O - 0 O	- 0.59 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.0 - 0.0 - A A - A	- 0.59 - 0.0 - 0 0 - 1528 - 1528 - 0.0 - 0.0 - A A - 177/R - 2136 - 0.90 - 8.0 - 8.0 - 8.0 - 35	- 0.59 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.0 - 0.0 - 0.90 - 2136 - 0.90 - 8.0 - 0.90 - 35 - 769 - 111	- 0.59 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.36 - 0.90 - 8.0 - 8.0 - 8.0 - 769 - 769 - 769 - 11.1	- 0.59 - 0.0 - 0.0 - 1528 - 1528 - 0.0 - 0.0 - 0.90 - 2136 - 0.90 - 8.0 - 8.0 - 8.0 - 35 - 11.1/R	- 0.59 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.0 - A - A - 0 - 0.90 - 8.0 - 0.90 - 8.0 - 35 - 11.1 - 11.1	- 0.59 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.36 - 0.90 - 8.0 - 8.0 - 8.0 - 769 - 769 - 11.1 - 11.1 - 1833	- 0.59 - 0.0 - 0.0 - 0.0 - 1528 - 1528 - 0.36 - 0.90 - 8.0 - 8.0 - 8.0 - 8.0 - 769 - 769 - 11.1 - 11.1 - 11.1 - 1833 - 1833	- 0.59 - 0.0 - 0.0 - 0.0 - 0.0 - 1528 - 0.36 - 0.0 - 0.0 - 0.90 - 8.0 - 8.0 - 0.90 - 8.0 - 0.90 - 11.1 - 11.1 - 11.1 - 1833 - 0.54 - 0.54	- 0.59 - 0.0 - 0.0 - 1528 - 0.36 - 0.0 - 0.0 - 0.90 - 8.0 - 8.0 - 8.0 - 8.0 - 7/7/R - 7/7/R - 11.1 - 11.1 - 63 - 63 - 63 - 63 - 60 - 7/7/R	0.0 0.0 0.0 1528 0.36 0.0 0.0 0.90 8.0 8.0 8.0 A A A A 7/7/R 769 0.34 11.1 B B B B 63 63 63 63 0.54	0.0 0.0 0.0 1528 0.0 0.0 0.0 0.90 8.0 8.0 8.0 8.0 8.0 8.0 7/7/R 11.1 11.1 1833 0.54 0.0 0.0 0.90 8.0 8.0 8.0 17/7/R 1833 0.54 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 1528 0.36 0.0 0.90 8.0 8.0 8.0 8.0 8.0 8.0 11.1	0.0 0.0 0.0 0.36 0.36 0.00 8.0 8.0 8.0 8.0 8.0 8.0 8.	0.0 0.0 0.0 1528 0.36 0.0 0.0 0.90 8.0 8.0 8.0 8.0 8.0 8.0 11.1 11.1 8 63 63 63 63 63 63 63 63 63 60 60 60 60 60 769 63 63 63 63 63 63 63 63 63 63
10.00 C C C 7 7 1 1 20	26	26	26	26	26 161 0.42 39.4	26 161 0.42 39.4 D D																
B Stop)	38 0 - L	9 9 9 9	38 0 1			71/- 161 101%101/- 161 1 1 1 1 1	7 R 7 R 7 N N N N N N N N N					M										
WB Stop)		Δ.	ı,	5 42 0.09	5 5 42 0.09 36.0																	
-	Geometry Volume (vph) V/C Ratio Delay (s) LOS		otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	tal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	tal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Dre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	Geometry Colume (vph) Colume (otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)	otal – Pre-timed (120s cycle)
volume (vpn) v/c Ratio	LOS	LOS Sth Queue (m)	LOS 95th Queue (m)	LOS 95th Queue (m) AM Peak Hour - 2044 Tot Geometry Volume (vph)	LOS LOS Sth Queue (m) AM Peak Hour - 2044 Tot Geometry Volume (vph) V/C Ratio Delay (s)		20 Avenue and 95th Queue (m) AM Peak Hour - 2044 Tot Geometry															

Table 6-3: 215 Street Arterial/Collector Intersection Summaries

Overall	Delay LOS					9.9 A							۲.,							9.5 A							۷.۷	
	De				(o I							<i>-</i>						0	ó 						1	`	
_	R			-	-	-	-	1			1		-	-				-	-	-	-	ı					-	
Southbound	T		L/T/T	417	0.12	0.0	Α	0		L/T/T	1615	0.47	0.0	Α	0		L/T/T	369	0.16	4.5	Α	17		L/T/T	1480	0.65	6.3	
	T			27	90.0	13.7	В	2			118	0.14	8.6	Α	4			20	0.51	33.7	Э	#12			139	0.32	5.3	
	R			2	0.00	0.0	٧	0			3	0.00	0.0	Α	0			53	90.0	1.4	Α	m1			73	0.08	1.9	
Northbound	T		T/T/R	1716	0.50	0.0	A	0		T/T/R	292	0.23	0.0	A	0		T/T/R	1657	0.73	7.6	A	46		T/T/R	029	0:30	7.6	
	٦			-	-	-	-	1				-	-	-	-			-	-	-	-	-				-	-	
	R			128	0.19	11.8	В	9	•		51	0.07	10.5	В	2			09	0.13	20.8	С	17	•		101	0.20	7.3	•
Westbound	T		L/R	-		-				L/R				-			L/R							L/R				
_	7			2	0.03	53.4	F	1			3	0.05	6.79	F	1			32	90.0	32.3	S	14			126	0.24	35.1	
	R	Stop)							Stop)							ycle)							ycle)					
Eastbound	T	alized (WB		-		-		,	alized (WB							ned (120s c							ned (120s c					
	٦	tal – Unsigr							tal – Unsign							tal – Pre-tir							tal – Pre-tin					
Approach	Movement	AM Peak Hour - 2044 Total – Unsignalized (WB Stop)	Geometry	Volume (vph)	v/c	Delay (s)	SOT	95th Queue (m)	PM Peak Hour - 2044 Total – Unsignalized (WB Stop)	Geometry	Volume (vph)	v/c	Delay (s)	SOT	95th Queue (m)	AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	Geometry	Volume (vph)	n/c	Delay (s)	S01	95th Queue (m)	PM Peak Hour - 2044 Total – Pre-timed (120s cycle)	Geometry	Volume (vph)	v/c	Delay (s)	
	Intersection	7		_				10 Avenue and	215 Street													CSC2 Access and 95th Queue (m)	215 Street					
Intersection	Number							7.0	/7													ç	87					_

As shown in Table 6-3, the 24 Avenue/215 Street intersection is anticipated to operate at acceptable levels of service as an unsignalized intersection. The geometry assumed in the assessment included a southbound left turn bay but did not include a separate northbound right turn bay. 24 Avenue east of 215 Street is anticipated to include one shared left/right lane. The left out is anticipated to be difficult during the peak hours; therefore, consideration could be given to developing the access as a right in/right out/left in access. The low volume left out movement (4 to 5 vph) could be accommodated at the 23 Avenue/212 Street intersection.

20 Avenue and 215 Street

The 20 Avenue/215 Street intersection is assumed to be developed as a signalized T-intersection within the 2047 horizon.

Although a six-lane cross-section was assumed for the 23 Avenue/215 Street intersection, it is not anticipated to continue through the 20 Avenue intersection. As shown in Table 6-3, the 20 Avenue/215 Street intersection is anticipated to operate at acceptable levels of service in the AM and PM peak hours. The analysis assumed pre-timed operation with a minimum green time of 30 seconds for the westbound movements. It is anticipated that this would provide sufficient pedestrian crossing time for movements across 215 Street. It is also noted that the southbound left turn is projected to operate at LOS F in the AM peak hour; although, the v/c ratio is projected to be acceptable. A southbound permitted/protected phase was not included as the volume is less than 100 vph and the addition of the phase would significantly impact the high volume northbound through movement.

14 Avenue/215 Street and 10 Avenue/215 Street

The 14 Avenue/215 Street and 10 Avenue/215 Street intersections are anticipated to be developed as unsignalized T-intersections within the 2047 horizon. The east intersection approaches are anticipated to accommodate a left turn bay and a right turn lane, while northbound right turn bays and southbound left turn bays are anticipated at the intersections along 215 Street.

Based on the assessments completed, the westbound left turns from 14 Avenue and 10 Avenue to 215 Street southbound are anticipated to experience long delays, resulting in LOS F; however, the volumes for these movements are low and the v/c ratios are projected to be 0.30 or less. It is also noted that the left turn volumes are low, and the suggested westbound left turn bay does not need to be substantial. For example, it could be developed within a standard 11.5 metre collector through the implementation of a parking ban within the first 30 metres east of 215 Street.

CSC2 Access and 215 Street

The CSC2 Access/215 Street intersection is anticipated to be developed as a signalized T-intersection. The east approach is anticipated to include a left turn bay and a right turn lane and a southbound left turn bay and a northbound right turn bay are anticipated to be developed along 215 Street. Based on the

assessment completed, the CSC2 Access/215 Street intersection is anticipated to operate well as a signalized intersection in the AM and PM peak hours in the 2047 horizon.

6.3.4 Riverview Way Arterial/Collector Intersections

Based on the arterial roadway assessment and discussions with the client group, Riverview Way is anticipated to be developed as a four-lane arterial with a wide centre median (without left turn bays) between Riverview Way and 199 Street and a two-lane arterial between 199 Street and 215 Street.

Two intersections along Riverview Way are anticipated to be signalized in the 2047 horizon: Riverview Way and 20 Avenue and Riverview Way and 197 Street. The remaining intersections are anticipated to remain as unsignalized intersections based on the projected side street volumes. Detailed intersection summaries are provided in **Table 6-4**.

Riverview Way and 20 Avenue

The east approach of the Riverview Way/20 Avenue intersection is a collector roadway while the west approach is a local roadway. As such, the geometry assumed on the east approach includes a left turn bay and a shared through/right lane, while the geometry assumed on the west approach includes a shared left/through/right lane. The north and south approaches are assumed to include one shared left/through lane and one shared through/right lane.

Based on the assessments completed, the Riverview Way/20 Avenue intersection is anticipated to operate well as a signalized intersection in the AM and PM peak hours under the 2047 total traffic scenario.

Riverview Way and 195 Street

The Riverview Way/195 Street intersection is anticipated to remain an unsignalized intersection in the 2047 horizon. Although the intersection assessments identify that the side street movements could operate at LOS F during the peak hours, the side street v/c ratios are projected to be less than 1.0. The overall magnitude of side street traffic is not anticipated to warrant signalization, especially considering the alternate accesses available to this portion of the plan area.

Riverview Way and 196 Street

The Riverview Way/196 Street intersection is identified as one intersection on the traffic volume exhibits; however, it actually represents three local roadway intersections along Riverview Way between 195 Street and 197 Street that provide access to residential land uses located between the North Saskatchewan River Valley and Riverview Way. It is anticipated that the accesses will remain unsignalized and that the side street approaches would include one inbound and one outbound lane at the intersection. The local/arterial intersections are anticipated to operate with long delays during peak hours, although, the v/c ratios are projected to be less than 0.60.

Table 6-4: Riverview Way Arterial/Collector Intersection Summaries

Movement L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R L T R T T R T T T T T	Intersection		Approach		Eastbound	_		Westbound			Northbound	~		Southbound		Ove	Overall	
Comparison	Number	Intersection	Movement	_	_			_			_		7	_	æ	Delay	SOT	
Commercy 1			AM Peak Hour - 2044 To	tal - Pre-ti	med (120s c	ycle)												
Note (yp) 13 4 2 2 5 362 1 1365 98 64 Note (yp) 13 4 2 2 3 34.7 47.9 1365 98 64 Note (yp) 12 2 3 34.7 47.9 1365 98 64 Note (yp) 12 12 12 12 12 12 12 1			Geometry		LTR			L/TR			LT/TR			LT/TR				
No. No.			Volume (vph)	13	4	2	72			П	1365	86	64	241	2			
Riverview Way SSTH Queue (m) SSTH Calce (m) SSTH			v/c Ratio		0.02		0.19	0.	62		69.0			0.23		7.6	α	
Riverview Way Sith Outeue (m) C C C D A A A A A A A A A			Delay (s)		29.9		34.7	47	6.		7.3			11.0		2.5	3	
Rikerview WAY STOCHOLINE Fine Line L			TOS		Э		C]	(Α			В				
and 2D Avenue PMP Peak Hour - 2044 Total - Pre-timed (120s cycle) Centerly 1.1R 1.7P 1.7P	7	Riverview Way	95th Queue (m)		6		56	#1	21		41			23				
Competity Comp	1/	and 20 Avenue	PM Peak Hour - 2044 To	tal - Pre-ti	med (120s c	ycle)												
Volume (yph)			Geometry		LTR			L/TR			LT/TR			LT/TR				
Vic Ratio			Volume (vph)	4	12	3	174	11	120	3	414	137	323	1057	10			
Delay (s) 31.8 47.4 9.7 9.0 LOS			v/c Ratio		0.02		0.54	0.	1		0.25			0.83		,	ı	
Compact Comp			Delay (s)		31.8		47.4	.6	.7		9.0			12.5		14.3	9	
Strit Queue (m)			SOT		J		۵	1	-		A			В				
AMP Peak Hour - 2004 Total – Unsignalized IN/IS Stop) ITTR ITTR <th co<="" td=""><td></td><td></td><td>95th Queue (m)</td><td></td><td>10</td><td></td><td>62</td><td>1</td><td>8</td><td></td><td>22</td><td></td><td></td><td>203</td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>95th Queue (m)</td> <td></td> <td>10</td> <td></td> <td>62</td> <td>1</td> <td>8</td> <td></td> <td>22</td> <td></td> <td></td> <td>203</td> <td></td> <td></td> <td></td>			95th Queue (m)		10		62	1	8		22			203			
Connetry LI/TR L			AM Peak Hour - 2044 To	tal – Unsig	nalized (N/	S Stop)												
Vice Ratio O.38			Geometry		LT/TR			LT/TR			LTR			LTR				
Vic Ratio 0.38 0.09 0.081 0.15 0			Volume (vph)	7	1245	16	32	276	7	23	3	188	32	2	8			
Priorition Prioritain Priorita Priorita			v/c Ratio		0.38			0.09			0.81			0.50		0	<	
ILOS PRIVE PRIVE			Delay (s)		0.1			1.5			57.5			85.1		0.0	(
Riverview Way 95th Queue (m) 12 1477 1049 28 40 5 5 5 5 5 5 5 5 5			TOS		Α			Α			ч			F				
and 195 Street PM Peak Hour - 2044 Total - Unsignalized (NJS Stop) 17 17 1049 28 40 17 18 19 18 19 18 19 18 19 19	9	Riverview Way	95th Queue (m)		0			2			20			17				
Geometry LT/TR	ТО	and 195 Street	PM Peak Hour - 2044 To	tal – Unsig	nalized (N/s	S Stop)												
Volume (yph) 12 485 40 157 1049 28 40 6 56 13			Geometry		LT/TR			LT/TR			LTR			LTR				
v/c Ratio 0.17 0.33 0.74 Delay (s) 0.4 2.1 82.0 LOS A A F F AM Peak Hour - 2044 Total - Unsignalized (IV/S stop) LT/TR			Volume (vph)	12	485	40	157	1049	28	40	9	99	13	9	13			
Delay (s) Delay (s) A			v/c Ratio		0.17			0.33			0.74			0.47		7 7	<	
LOS A A A A A A A A A			Delay (s)		0.4			2.1			82.0			97.1		†	(
AM Peak Hour - 2004 Total – Unsignalized (IN/S Stop) LT/TR LT/TR <t< td=""><td></td><td></td><td>TOS</td><td></td><td>Α</td><td></td><td></td><td>Α</td><td></td><td></td><td>ч</td><td></td><td></td><td>F</td><td></td><td></td><td></td></t<>			TOS		Α			Α			ч			F				
AMM Peak Hour - 2044 Total – Unsignalized (N/S Stop) LT/TR LT/			95th Queue (m)		1			4			35			15				
Geometry LT/TR			AM Peak Hour - 2044 To	tal – Unsig	nalized (N/	S Stop)												
Volume (vph) 3 1116 15 16 282 9 33 5* 98 54 98 7 V/c V/c 0.34 0.34 0.09 0.07 0.59 <t< td=""><td></td><td></td><td>Geometry</td><td></td><td>LT/TR</td><td></td><td></td><td>LT/TR</td><td></td><td></td><td>LTR</td><td></td><td></td><td>LTR</td><td></td><td></td><td></td></t<>			Geometry		LT/TR			LT/TR			LTR			LTR				
v/c 0.34 0.09 0.09 0.09 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.05 0.05 0.05 0.02 0.07 0.07 0.02 0.02 0.07 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03			Volume (vph)	3	1116	15	16	282	6	33	2*	86	54	2*	4			
Riverview Way Yes Delay (s) 0.0 0.7 40.2 40.2 40.2 40.2 40.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.3<			n/c		0.34			0.09			0.59		_	0.43	$\left. ight]$	5,3	۵	
Riverview Way 95th Queue (m) and 196 Street Volume (vph) 7 C C C C C C C C C C C C C C C C C C			Delay (s)		0.0			0.7			40.2			47.5		5	:	
Riverview Way 95th Queue (m) 0 1 27 27 and 196 Street PM Peak Hour - 2044 Total – Unsignalized (IN/S Stop) Canal TyTR LT/TR LT/TR <th colspa<="" td=""><td></td><td></td><td>TOS</td><td></td><td>A</td><td></td><td></td><td>⋖</td><td></td><td></td><td>Е</td><td></td><td></td><td>Е</td><td>$\left[\right]$</td><td></td><td></td></th>	<td></td> <td></td> <td>TOS</td> <td></td> <td>A</td> <td></td> <td></td> <td>⋖</td> <td></td> <td></td> <td>Е</td> <td></td> <td></td> <td>Е</td> <td>$\left[\right]$</td> <td></td> <td></td>			TOS		A			⋖			Е			Е	$\left[\right]$		
and 196 Street PM Peak Hour - 2044 Total - Unsignalized (Iv/S Stop)	19	Riverview Way	95th Queue (m)		0			1			27			16				
LT/TR LT/TR <th< td=""><td></td><td>and 196 Street</td><td>PM Peak Hour - 2044 To</td><td>tal – Unsig</td><td>nalized (N/</td><td>S Stop)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		and 196 Street	PM Peak Hour - 2044 To	tal – Unsig	nalized (N/	S Stop)												
7 493 46 77 981 43 5* 5* 29 16 0.17 0.31 0.39 <td< td=""><td></td><td></td><td>Geometry</td><td></td><td>LT/TR</td><td></td><td></td><td>LT/TR</td><td></td><td></td><td>LTR</td><td></td><td></td><td>LTR</td><td></td><td></td><td></td></td<>			Geometry		LT/TR			LT/TR			LTR			LTR				
0.17 0.31 0.39 0.2 1.0 38.1 A A E 0 2 13			Volume (vph)	7	493	46	77	981	43	33	2*	29	16	2*	9			
0.2 1.0 38.1 A A E 0 2 13			n/c		0.17			0.31			0.39		_	0:30	$\left. ight]$	2,1	۵	
A A E E 0 13 13 13 13 13 13 13 13 13 13 13 13 13			Delay (s)		0.2			1.0			38.1			60.4		ij	(
0 2 13			TOS		A			⋖			Е			ч	$\left[\right]$			
			95th Queue (m)		0			2			13			6				

Table 6-4: Riverview Way Arterial/Collector Intersection Summaries

Intersection		Approach		Eastbound	_		Westbound			Northbound			Southbound	þ	OVC	Overall
Number	Intersection	Movement	_	-	æ	_	⊢	~	_	_	~	_	-	~	Delay	SOT
		AM Peak Hour - 2044 Total – Pre-timed (120s cycle)	tal – Pre-ti	med (120s ເ	:ycle)											
		Geometry		LT/TR			LT/TR			L/TR			L/TR			
		Volume (vph)	92	1024	65	27	270	22	42	4	17	92	9	26		
		v/c		0.58			0.18		0.12	0.0	0.05	0.24	0	0.13	117	٥
		Delay (s)		11.0			4.2		33.4	15	15.8	35.6	1	10.5	11./	۵
		SO1		В			Α		J	Ш	В	О		В		
	Riverview Way	95th Queue (m)		88			7		17	7	7	33		12		
	and 197 Street	PM Peak Hour - 2044 Total – Pre-timed (120s cycle)	tal – Pre-ti	ned (120s c	ycle)											
		Geometry		LT/TR			LT/TR			L/TR			L/TR			
		Volume (vph)	92	462	123	20	998	104	98	6	35	20	12	120		
		v/c		0.48			0.52		0.25	0.0	90.0	0.14	0	0.25	Ç	<
		Delay (s)		4.5			2.9		36.1	13	13.8	33.8	-	8.6	7.0	∢
		SOT		A			A		۵	ш	В	U		A		
		95th Queue (m)		14			13		31	11	1	70		18		
		AM Peak Hour - 2044 Total – Unsignalized (N/S Stop)	tal – Unsig	nalized (N/s	Stop)											
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	23	243	16	23	118	15	55	10	129	74	9	31		
		v/c		0.02			0.02			0.33			0.29		0 9	<
		Delay (s)		0.8			1.3			13.9			18.2		o.0	ί
		SOT		٧			Α			В			C			
	Riverview Way	95th Queue (m)		0			0			11			10			
	and 203 Street	PM Peak Hour - 2044 Total – Unsignalized (N/S Stop)	tal – Unsig	nalized (N/S	Stop)											
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	26	213	58	111	270	64	31	22	45	31	21	46		
		v/c		0.05			0.09			0.33			0.33		9	<
		Delay (s)		1.8			2.7			23.1			22.8		0.0	(
		SOT		٧			Α			C			C			
		95th Queue (m)		1			2			11			11			

Table 6-4: Riverview Way Arterial/Collector Intersection Summaries

Intersection		Approach		Eastbound		>	Westbound		[Northbound			Southbound	p	Õ	Overall
Number	Intersection	Movement	٦	T	R	٦	T	R	7	T	Я	٦	T	æ	Delay	SOT
		AM Peak Hour - 2044 Total – Unsignalized (N	tal – Unsigr	alized (NB S	IB Stop)											
		Geometry		TR			ᄓ			LR						
		Volume (vph)		93	59	89	137		146		189					
		v/c		0.00	61	0.05	5			0.48					0	<
		Delay (s)		0.0	0	2.8		,		14.7					o.o	∢
		SOT		A		A				В						
;	Riverview Way	95th Queue (m)		0		1				21						
77	and 209 Street	PM Peak Hour - 2044 Total – Unsignalized (NB Stop)	tal – Unsigr	nalized (NB S	top)		•	7								
		Geometry		TR			ᆸ			LR						
		Volume (vph)		193	149	201	147		91		135					
		v/c		0.20	0;	0.17	2			0.51					7	<
		Delay (s)		0.0	C	5.7		-		21.6					C:/	∢
		SOT		A		A		-		C						
		95th Queue (m)		0		5				23						
		AM Peak Hour - 2044 Total – Unsignalized (SB Stop)	tal – Unsigr	alized (SB S	top)											
		Geometry		LT			TR			-			LR			
		Volume (vph)	28	74	-	-	231	51		-		78	-	113		
		v/c	0.	0.02		-	0.17	7					0.29		7	<
		Delay (s)	2	2.3	-	-	0.0)		-			12.6		r F	ζ
		TOS	,	А	-	-	A			-			В			
22	Riverview Way	95th Queue (m)		1	-	-	0			-			10			
7	and 212 Street	PM Peak Hour - 2044 Total – Unsignalized (SB Stop)	tal – Unsigr	ıalized (SB Si	top)											
		Geometry		ΙΊ			TR						LR			
		Volume (vph)	106	243	-	-	124	114		-		66	-	20		
		v/c	0.	0.08	-	-	0.14	4		-			0.32		7	<
		Delay (s)	3	3.0	-	-	0.0)		-			16.1		ţ.	(
		SOT		A	-	-	A						C			
		95th Queue (m)		2		-	0			-			11			

^{*}Movement was projected to accommodate 0 vph; a nominal 5 vph was assumed in the assessment.

Riverview Way and 197 Street

The Riverview Way/197 Street intersection provides access to residential land uses and the transit supportive development north of Riverview Way and to the district park and high schools to the south of Riverview Way. The intersection is anticipated to operate well as a signalized intersection in the AM and PM peak hours.

Riverview Way Between 199 Street and 215 Street

The intersections along Riverview Way between 199 Street and 215 Street are anticipated to operate as unsignalized intersections with one shared left/through/right lane on all four approaches. Based on the assessments completed, the intersections are anticipated to operate at LOS C or better during the AM and PM peak hours under the 2047 total traffic scenario.

The recommended intersection geometry and traffic control for the arterial/arterial, arterial/collector, and arterial/access intersections within Riverview NBHDs 1, 2, and 3 are illustrated in **Exhibit 6-1**.

6.4 Collector/Collector and Collector/Access Intersections

The following collector/collector and collector/access intersections were analyzed to confirm the internal collector roadway requirements:

NBHD 1 Collector/Collector and Collector/Access Intersections

- 27 Avenue and 187 Street
- 27 Avenue and 195 Street
- 25 Avenue and 195 Street
- 24 Avenue and 196 Street

- 24 Avenue and TC2 Access
- 24 Avenue and TC1 Access
- 24 Avenue and 203 Street
- 24 Avenue and 212 Street

NBHD 2 Collector/Collector and Collector/Access Intersections

- TC3 Access and 203 Street
- 18 Avenue and 203 Street
- CSC1 Access and 212 Street
- 20 Avenue and 212 Street

- 18 Avenue and 212 Street
- 14 Avenue and 209 Street
- 10 Avenue and 209 Street
- CSC2 Access and 212 Street

NBHD 3 Collector/Collector Intersections

• 20 Avenue and 195 Street

• 20 Avenue and 197 Street

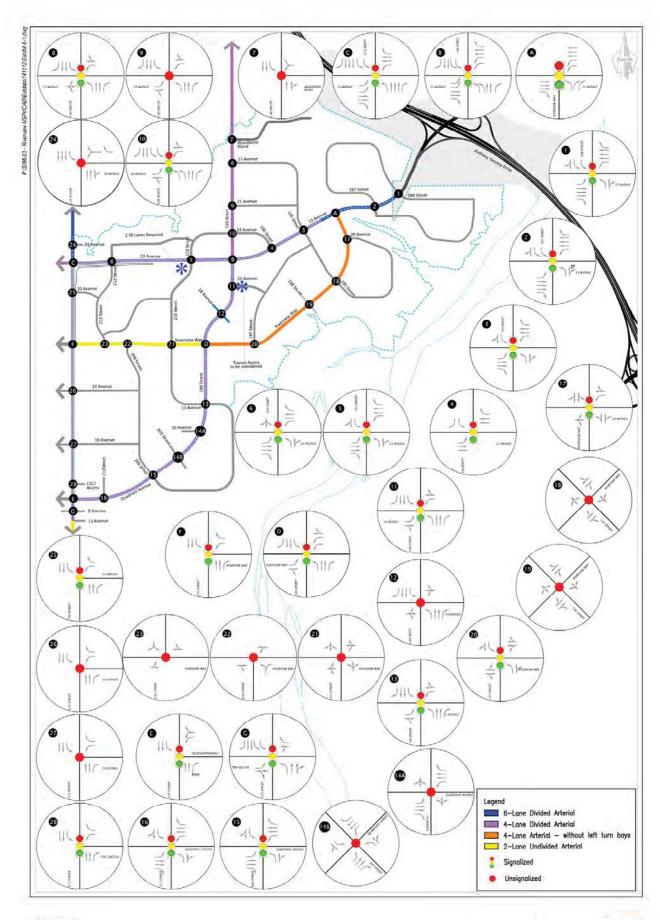


Exhibit 6-1 N.T.S.

Intersection Geometry and Traffic Control

6.4.1 NBHD 1 Collector/Collector Intersections

The intersection assessments for NBHD 1 are summarized in **Table 6-5**. The majority of the intersections are anticipated to operate well as unsignalized intersections with one lane accommodating all movements on each approach.

The collector roadways around the town centre are anticipated to accommodate daily volumes greater than 10,000 vpd; therefore, a more detailed review of the potential collector/collector and collector/access intersections was completed.

TC1 Access

Access to TC1 is assumed to include the east approach of the 24 Avenue/203 Street intersection as well as at least one intersection along 24 Avenue between 199 Street and 203 Street.

- Based on available site plans, the 24 Avenue/203 Street intersection is proposed to be developed as a single lane roundabout. Based on the SIDRA Intersection 6.0 assessments, the intersection is anticipated to operate very well as a single lane roundabout in the AM and PM peak hours.
- The 24 Avenue/TC1 access is anticipated to operate well as an all-way stop controlled intersection with left turn bays on the east and north approaches and a right turn bay on the south approach. Alternatively, the 24 Avenue/TC1 Access could operate very well as a single lane roundabout.

TC2 Access

Access to TC2 is assumed to include the west leg of the 24 Avenue/196 Street intersection as well at least one additional all-directional access along 24 Avenue between 196 Street and 199 Street.

- The 24 Avenue/196 Street intersection is currently proposed to be developed as single lane roundabout. Based on the SIDRA Intersection 6.0 assessments, the intersection is anticipated to operate very well as a single lane roundabout.
- The 24 Avenue/TC2 access is anticipated to operate well as an all-way stop controlled intersection with left turn bays on all four approaches. Alternatively, the intersection could operate very well as a single lane roundabout in the AM and PM peak hours.

Based on the above a two-lane cross-section with left turn bays is recommended along 24 Avenue between 196 Street and 203 Street to provide access opportunities to TC2. If roundabouts are implemented at the TC1 and TC2 site accesses, a single lane would be appropriate along 24 Avenue.

Table 6-5: Neighbourhood 1 Collector/Collector Intersection Summaries

Intersection	Intersection		Approach		Eastbound			Westbound		Northbound			Southbound	0	Overall
AMP beat Hour - 2044 Total - Unsignalized (All-Way Stop) CF CF CF CF CF CF CF C	Number	Intersection	Movement	_	T		7			_	œ	٦	T	Delay	SO1
Victorie (yph) 2 17 17 17 17 17 17 17			AM Peak Hour - 2044 To	al – Unsign	alized (All-W	'ay Stop)									
Volume (vph) 2 141 2 123 7 100 11 0.00 Vic Schooler (vph) 1 0.00 Vic Sch			Geometry		LTR			L/TR		LT/R			L/TR		
Vic Color			Volume (vph)	2	41	2	123		1	1	70	96	2 5		
10			v/c		0.07		0.19	0.14	0	.00	0.09	0.16	0.01	7 0	<
1 To Control			Delay (s)		9.8		9.8	6.9		7.5	7.0	8.7	6.7	6:1	τ
TC1 Access			SOT		A		٧	A		A	٧	A	٨		
TC1 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC1 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC2 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC3 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC4 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC5 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC5 Access PMR-Peak Hour 2044 Total – Unisignalized fAll-Way Stop) TC5 Ac	,	24 Avenue and	95th Queue (m)		15			15		3	14	17	∞	<u> </u>	
Connetry LTR	31	TC1 Access	PM Peak Hour - 2044 To	al – Unsign	alized (All-W	ay Stop)									
Volume (vph) 7 13 4 337 38 311 3 5 Volume (vph) 7 10.5 0.05 0.056 0.051 Volume (vph) 10.9 10.5 0.051 Volume (vph) 2 41 2 12.3 7 10.9 1.1 Volume (vph) 2 41 2 12.3 7 10.9 1.1 Volume (vph) 2 41 2 12.3 7 10.9 1.1 Volume (vph) 2 41 2 12.3 7 10.9 1.1 Volume (vph) 7 13 4 337 38 311 3 3.3 Volume (vph) 7 13 4 337 38 311 3 3.3 Volume (vph) 7 13 4 337 38 311 3 3.3 Volume (vph) 7 13 4 337 38 311 3 3.3 Volume (vph) 7 13 4 337 38 311 3 3.3 Volume (vph) 9 6 5 14.8 7.1 10.09 Volume (vph) 9 6 5 14.8 7.1 10.09 Volume (vph) 10 11 0.01 0.01 0.04 Volume (vph) 2 1 1 1 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 0.01 0.01 Volume (vph) 2 1 1 1 0.01 0.01 0.01 0.01 Volume (vph) 2 1 1 1 0.0			Geometry		LTR			L/TR		LT/R			L/TR		
y/c 0.05 0.65 0.56 0.01 Delay (s) 1.0.9 2.0.8 14.9 9.2 LOS 1.0.9 2.0.8 14.9 9.2 LOS 1.0.9 2.0.8 14.9 9.2 LOS 1.0.9 2.0.8 14.9 9.2 AM Peak Hour - 2044 Total – Roundabout 1.1R 1.18 7 1.09 1 1.18 Volume (vph) 2 4.2 4.9 3.7 4.9 3.7 3.7 Delay (s) 4.2 4.2 4.9 3.7 4.9 3.7 3.7 Delay (s) 4.2 4.2 4.9 3.7 4.9 3.7 3.7 Delay (s) 4.2 4.2 4.9 3.7 4.9 3.7 3.7 TC1 Acress Geometry 1.1R 4.2 4.9 3.7 4.9 3.7 3.7 Delay (s) 8.0 1.1 4.2 4.9 3.1 1.1 1.1 1.1			Volume (vph)	7	13	4			3	3	302	265	4 6	Ī	
Delay (s) 10.9 20.8 14.9 9.2			v/c		0.02						0.53	0.55	0.02	,	(
CONTRICTORN			Delay (s)		10.9			14.9	01	3.2	15.1	18.3	8.5	17.3	ر
Sight Queue (m)			TOS		В			В		A	J	U	A		
AM Peak Hour - 2044 Total - Roundabout Cleometry			95th Queue (m)		13			36		9	28	33	8	1	
Segmetry LTR			AM Peak Hour - 2044 To	al – Round	about									-	
Volume (vph) 2 41 2 123 7 109 1 11 Delay (s)			Geometry		LTR			LTR		LTR			LTR		
V/C 0.05 0.16 0.07 Delay(s) 4.2 4.9 3.7 LOS A A A A LOS A A A A TC1 Access PM Peak Hour- 2044 Total – Roundabout LTR LTR LTR Cometry LTR LTR LTR LTR Volume (vph) 7 13 4 337 38 31 3 3 LOS A			Volume (vph)	2	41	2	123		1	1	70	96	2 5	<u> </u>	
24 Avenue and Park Formula Comment or Park Hour - 2044 Total — Unsignal Tcd Avenue and Park Hour - 2044 Total — Unsignal Tcd Avenue and Park Hour - 2044 Total — Unsignal Tcd Avenue and Park Hour - 2044 Total — Unsignal Tcd All NAva Stop) 4.9 4.9 9.9 7.1 A A A A A A A A A A A A A A A A A A A			v/c		0.02			0.16		0.07			0.10	0	<
LOS			Delay (s)		4.2			4.9		3.7			7.8	5.5	∢
24 Avenue and 9 Sth Queue (m) 2 6 5 2 TC1 Access TC1 Access TC2 Access Access Avenue and TC2 Access Avenue and Volume (vph) LTR ITR			SOT		A			٨		۷			V		
TC1 Access PM Peak Hour - 2044 Total - Roundabout LTR	,	24 Avenue and	95th Queue (m)		2			9		2			3	1	
Geometry LTR LT	31	TC1 Access	PM Peak Hour - 2044 To	al – Round	about										
Volume (vph) 7 13 4 337 38 311 3 3 V/C Delay (s) 8.0 -0.04 -0.46 -0.35 -0.35 Delay (s) 8.0 A A A A A A LOS AM Peak Hour - 2044 Total - Unsignalized (All-Way Stop) L/TR L/TR L/TR L/TR L/TR Geometry U/C 0.15 0.11 0.01 0.11 0.01 0.11 0.09 1/TR LOS A			Geometry		LTR			LTR		LTR			LTR		
V/C 0.04 0.046 0.05 0.046 0.05 0.05 0.05 0.05 0.046 0.05 0.05 0.05 0.048 0.05			Volume (vph)	7	13	4	337		Э	3	302	265	4 6	<u> </u>	
LOS A			v/c		0.04			0.46		0.35			0.33	,	•
LOS A A A A A A A A A			Delay (s)		8.0			4.8		5.1			10.1	0.1	∢
AM Peak Hour - 2044 Total – Unsignalized (All-Way Stop) 1/TR			TOS		Α			А		٧			В		
AM Peak Hour - 2044 Total – Unsignalized (AII-Way Stop) L/TR L/TR <th< td=""><td></td><td></td><td>95th Queue (m)</td><td></td><td>1</td><td></td><td></td><td>27</td><td></td><td>16</td><td></td><td></td><td>14</td><td></td><td></td></th<>			95th Queue (m)		1			27		16			14		
Geometry L/TR			AM Peak Hour - 2044 To	al – Unsign	alized (All-W	'ay Stop)									
Volume (vph) 96 5 84 5* 9 77 55 5* v/c v/c 0.15 0.11 0.01 0.01 0.01 0.09 70 Delay (s) 8.5 6.9 7.6 7.1 8.2 8.2 7.0 LOS A A A A A A A A TC2 Access PM Peak Hour - 2044 Total - Unsignalized (All-Way Stop) I/TR A A A A A A A A B A A B A B A B A B B A A B B B A B B A B B A B B A B B B A B B A B B A B B A B B A B B A B B B B A			Geometry		L/TR			L/TR		L/TR			L/TR		
v/c 0.15 0.11 0.01 0.01 0.09 Delay (s) 8.5 6.9 7.6 7.1 8.2 LOS A A A A A A A 24 Avenue and OSth Queue (m) 19 17 6 16 14 17 TC2 Access Geometry 1/TR 1/TR 1/TR 1/TR 1/TR 1/TR Volume (vph) 243 15 207 5* 15 5* V/c 0/C 0.51 0.39 0.01 0.42 0.48 Delay (s) 17.0 12.3 9.9 13.4 16.7 Delay (s) 10.5 10.3 13.4 16.7 16.7 Delay (s) 10.5 10.3 13.4 16.7 16.7 Delay (s) 10.5 10.3 13.4 16.7 16.7 Delay (s) 10.5 10.3 10.3 10.4 16.7 Delay (s) 10.3 10.4 <td></td> <td></td> <td>Volume (vph)</td> <td>96</td> <td>5</td> <td>84</td> <td>2*</td> <td></td> <td>22</td> <td></td> <td>5*</td> <td>73</td> <td>5* 77</td> <td></td> <td></td>			Volume (vph)	96	5	84	2*		22		5*	73	5* 77		
Delay (s) 8.5 6.9 7.6 7.1 8.2 LOS A			v/c	0.15	0.1	.1	0.01	0.11	0.09	0.0	1	0.12	0.11	7 6	4
LOS A B C C			Delay (s)	8.5	9:0	9	7.6	7.1	8.2	9:0	9	8.4	7.0	?	(
24 Avenue and Optin Queue (m) 19 17 6 16 14 17 TC2 Access Geometry L/TR L/TR L/TR L/TR L/TR L/TR Volume (vph) 243 15 207 5* 15 205 219 5* V/c 0.51 0.39 0.01 0.42 0.48 5* 16.7			ros	∢	A		A	A	∢	A		Α	4		
TC2 Access PM Peak Hour - 2044 Total – Unsignalized (All-Way Stop) L/TR Delay (s) L/T	32	24 Avenue and	95th Queue (m)	19	17	,	9	16	14	10)	14	16		
metry L/TR L/TR L/TR L/TR me (vph) 243 15 207 5* 15 205 219 5* y(s) 0.51 0.39 0.01 0.42 0.48 5* y(s) 17.0 12.3 9.9 13.4 16.7 7 Queue (m) 47 35 7 25 24 25	1	TC2 Access	PM Peak Hour - 2044 Tot	al – Unsign	alized (All-W	ay Stop)			•					•	-
me (vph) 243 15 207 5* 15 205 219 5* y(s) 0.51 0.39 0.01 0.42 0.48 7 y(s) 17.0 12.3 9.9 13.4 16.7 7 Queue (m) 47 35 7 25 24 24			Geometry		L/TR			L/TR		L/TR			L/TR		
y(s) 0.51 0.39 0.01 0.42 0.48 y(s) 17.0 12.3 9.9 13.4 16.7 C B A B C Queue (m) 47 35 7 25 24			Volume (vph)	243			2*		219		5*	506	5* 249		
y(s) 17.0 12.3 9.9 13.4 16.7 C B A B C C Oueue (m) 47 35 7 25 24			v/c	0.51	0.3	6	0.01	0.42	0.48	0.0	2	0.43	0.45	17.5	α
C B A B C C Oueue(m) 47 35 7 25 24			Delay (s)	17.0	12.	3	6.6	13.4	16.7	9.6	0	15.0	13.3		ם
47 35 7 25 24			TOS	U	В		A	В	U	A		В	В		
			95th Queue (m)	47	35		7	25	24	6		24	28		

Table 6-5: Neighbourhood 1 Collector/Collector Intersection Summaries

Number Intersection Novement LTR	2044 Total – Rou				Westbound		_	Northbound			Southbound		Overall	all
24 Avenue and TC2 Access 187 Street 27 Avenue and 195 Street	2044 Total – Rou	-	~	_	-	R	_	-	æ	_	-	æ	Delay	ros
24 Avenue and TC2 Access 187 Street 27 Avenue and 195 Street	90	ndabout												
24 Avenue and TC2 Access 27 Avenue and 187 Street 27 Avenue and 195 Street	90	LTR			LTR			LTR			LTR			
24 Avenue and TC2 Access 27 Avenue and 187 Street 27 Avenue and 195 Street	2	5	84	2*	6	77	55	2*	*2	73	*0	77		
24 Avenue and TC2 Access 27 Avenue and 187 Street 27 Avenue and 195 Street		0.16			60.0			0.07			0.14		U	<
24 Avenue and TC2 Access 27 Avenue and 187 Street 27 Avenue and 195 Street		5.7			3.7			9.2			5.5		0.0	τ
24 Avenue and TC2 Access 187 Street 27 Avenue and 195 Street		A			٧			٧			A			
TC2 Access 27 Avenue and 27 Avenue and 195 Street		9			3			2			2			
27 Avenue and 187 Street	2044 Total - Rou	ndabout												
27 Avenue and 187 Street		LTR			LTR			LTR			LTR			
27 Avenue and 187 Street 27 Avenue and 195 Street	243		207	2*	15	205	219	2*	2*	506	*0	249		
27 Avenue and 187 Street 27 Avenue and 195 Street		0.48	-		0:30			0:30			0.49		1	<
27 Avenue and 187 Street 27 Avenue and 195 Street		7.0			6.2			10.6			6.9		۲.۶	∢
27 Avenue and 187 Street 27 Avenue and 195 Street		A			۷			В			۷			
27 Avenue and 187 Street 27 Avenue and 195 Street		26			13			13			26			
27 Avenue and 187 Street 27 Avenue and 195 Street	2044 Total - Unsi	gnalized (E	3 Stop)											
27 Avenue and 187 Street 27 Avenue and 195 Street		LR	LR					Ţ			TR			
27 Avenue and 187 Street 27 Avenue and 195 Street	137	•	260		1		32	569	,		40	17		
27 Avenue and 187 Street 27 Avenue and 195 Street		0.50			-		0.0	0.02	-	-	0.03		0 /	<
27 Avenue and 187 Street 27 Avenue and 195 Street		14.1					1.	1.0			0.0		0./	۲
27 Avenue and 195 Street		В			-		A	١	-	-	A			
187 Street 27 Avenue and 195 Street		23						1			0			
27 Avenue and 195 Street	2044 Total - Unsi	gnalized (El	(EB Stop)											
27 Avenue and 195 Street		LR			-			LT			TR			
27 Avenue and 195 Street	39	'	29				217	52	-		242	130		
27 Avenue and 195 Street		0.22					0.3	0.19			0.22		0 5	<
27 Avenue and 195 Street		15.6					7.	7.4	1		0.0		0.	ζ
27 Avenue and 195 Street		C			-		f	А	-	-	A			
27 Avenue and 195 Street		7					9	9	-		0			
27 Avenue and 195 Street	2044 Total – Uns	ignalized (№	IB Stop)									-	•	
27 Avenue and 195 Street		TR			占			LR			'			
27 Avenue and 195 Street	1	249		11	82	-	10		∞		-	-		
27 Avenue and 195 Street	1		0.19	0.01)1			0.03			1		0.7	V
27 Avenue and 195 Street	'		0.0	1.0	0			10.6						
27 Avenue and 195 Street	-		A	A	_			В			1			
195 Street	- :	- :	0	0		-		1						
Geometry	2044 Iotal – Uns	ignalized (N	B Stop)		!							-		
		TR	-		L			LR						
Volume (vph)	1	110	18	10	242	-	53		10		1	-		
v/c Ratio	-		0.08	0.01	11	-		0.10					8	٥
Delay (s)	1		0.0	0.4	4	-		11.1			1) i	:
SOT	'		Α	⋖				В			1			
95th Queue (m)	1		0		0			3			1			

Table 6-5: Neighbourhood 1 Collector/Collector Intersection Summaries

Intersection		Approach		Eastbound			Westbound		_	Northbound			Southbound		ŏ	Overall
Number	Intersection	Movement	_	T	æ	_	_	~	_	_	~	7	L	æ	Delay	S01
		AM Peak Hour - 2044 Total – Unsignalized (EB Stop)	tal – Unsign	alized (EBS	top)											
		Geometry		LR						11			TR			
		Volume (vph)	6		57				13	30			150	40		
		v/c		0.08					0.01	11	-	-	0	0.11	7	<
		Delay (s)		8.6					2.4	4	-	-	0	0.0	7. 7	ζ
		SOI		Α					A			-	1	A		
(25 Avenue and	95th Queue (m)		2					0	-	,	-		0		
34C	195 Street		al – Unsign	alized (EB S	top)					<u>.</u>						
		Geometry		LR						ᄓ			TR			
		Volume (vph)	39		21				43	126			28	19		
		v/c		0.08					0.03	33		-	0.0	0.05	,	<
		Delay (s) 10.3		10.3					2.1	1			0	0.0	3.2	∢
		SOI		В					۷			-	1	A		
		95th Queue (m)		2					1			-		0		
		AM Peak Hour - 2044 To	tal – Round	about												
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	2*	4	48	49	7	6	69	77	8	5	73	2*		
		v/c		90.0			90.0			0.11			0.08		0 7	<
		Delay (s)		3.9			8.9			4.9			3.8		; 0	ζ
		SOT		Α			Α			А			Α			
23	24 Avenue and	95th Queue (m)		2			2			4			3			
c c	196 Street	PM Peak Hour - 2044 To	al – Round	about												
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	2*	16	187	15	15	15	178	205	39	15	206	2*		
		v/c		0.23			90.0			0.32			0.24		4	<
		Delay (s)		4.6			6.3			4.9			4.6		5.	ζ
		TOS		Α			Α			Α			Α			
		95th Queue (m)		6			2			15			6			

Table 6-5: Neighbourhood 1 Collector/Collector Intersection Summaries

Intersection		Approach		Eastbound			Westbound			Northbound			Southbound		Ove	Overall
Number	Intersection	Movement	٦	_	R	٦	T	R	٦	T	В	٦	_	R	Delay	FOS
		AM Peak Hour - 2044 Total – Roundabout	al – Round	about												
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	42	2	114	93	2	*5	25	2	158	*5	5	8		
		v/c Ratio		0.15			0.09			0.15			0.02		0 7	<
		Delay (s)		4.6			7.1			3.7			4.7		0.	τ
		SOT		٧			Α			٧			۷			
ç	24 Avenue and			9			3			9			1			
30	203 Street		al – Round	about												
		Geometry		LTR			LTR			LTR			LTR			
		Volume (vph)	17	12	51	389	10	2*	86	7	432	*2	9	41		
		v/c Ratio		0.10			0.36			0.40			0.07		L	<
		Delay (s)		6.3			7.7			3.9			6.4		0.0	∢
		SOT		A			Α			∢			۷			
		95th Queue (m)		4			17			22			33			
		AM Peak Hour - 2044 Total - Unsignalized	al - Unsign	alized (NB Stop)	top)											
		Geometry		TR			ᄓ			LR						
		Volume (vph)	-	1	15	82	3	-	3	-	23		-			
		v/c Ratio	,	0.	0.01	0.05	5	, 		0.03					y	<
		Delay (s)	-	0	0.0	7.2	2	-		8.8			-		0.0	τ
		LOS		,	А	A				A			•			
38	24 Avenue and	95th Queue (m)			0	1		-		1			1			
67	212 Street	PM Peak Hour - 2044 Total - Unsignalized (NB Stop)	al - Unsign	alized (NB S	top)											
		Geometry		TR			LT			LR			-			
		Volume (vph)	-	9	4	48	7	-	12	-	81		-			
		v/c Ratio	-	0	0.01	0.03)3	-		0.09			-		7	<
		Delay (s)	,	J	0.0	6.4	4	, 		0.6			•		?	ζ
		FOS	-		А	A				٧			-			
		95th Queue (m)			0	1				3						

^{*}Movement was projected to accommodate 0 vph; a nominal 5 vph was assumed in the assessment.

6.4.2 NBHD 2 Collector/Collector Intersections

The intersection assessments for the NBHD 2 are summarized in **Table 6-6**. All of the intersections are anticipated to operate well as unsignalized intersections with one lane accommodating all movements on each approach.

6.4.3 NBHD 3 Collector/Collector Intersections

As shown in **Table 6-7**, the NBHD 3 collector/collector intersections are anticipated to operate at acceptable levels of service as unsignalized intersections within one lane accommodating all movements on each approach.

The recommended collector roadway geometry and traffic control within Riverview NBHDs 1, 2, and 3 are illustrated on **Exhibit 6-2**.

6.5 Complete Streets

The City of Edmonton recently developed guidelines for the implementation of complete streets in Edmonton. The Complete Streets Guidelines (May 2013) provide design guidance for the implementation of cross-sections for all modes (pedestrians, bicycles, transit, vehicles) for new and rehabilitated transportation projects. The guidelines are intended to allow for flexibility in the planning and design of roadways based on the site context and the prioritization of modes.

Although typical City of Edmonton roadways standards can still be utilized, there is the potential for a greater mix of cross-sections throughout Riverview NBHDs 1, 2, and 3. Where a standard City of Edmonton collector cross-section was identified (e.g. 11.5 metre collector), a minimum of two travel lanes should be provided. Additional roadway elements such as on-street parking, active modes elements (e.g. sidewalks, bike facilities), and boulevard treatments should be designed to reflect the adjacent land uses, the overall active modes network, and vehicle access requirements (e.g. transit or truck traffic).

At this time alternate cross-sections have not be developed for specific roadways within the plan; however, it is anticipated that Riverview Way and the roadways within and surrounding the town centre will implement alternate cross-sections that reflect the Complete Streets guidelines.

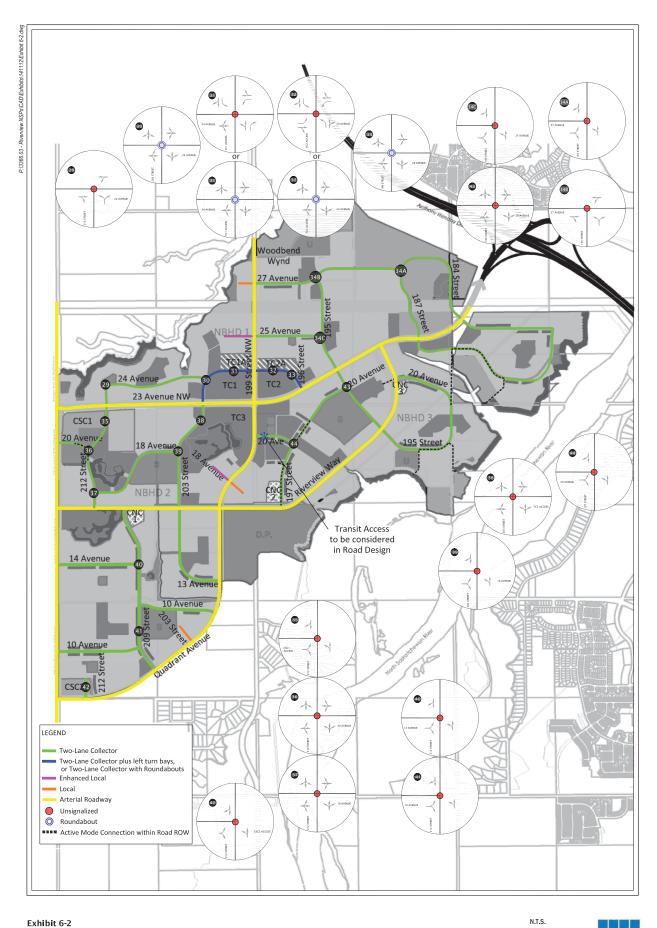
As well, there are a number of active modes connections identified along local and collector roadway segments in Section 3.4 that require the development of bicycle facilities to ensure the continuity of the overall active modes network. These roadway segments will be developed using the Complete Streets guidelines, in consultation with Sustainable Transportation.

Table 6-6: Neighbourhood 2 Collector/Collector Intersection Summaries

Table 6-6: Neighbourhood 2 Collector/Collector Intersection Summaries

Marie Mari	Intersection		Approach		Eastbound			Westbound			Northbound			Southbound		Overall	rall
Control Figure Cont	Number	Intersection	Movement	7	_			⊢			⊢			_		Delay	SOT
Secretary Secr			AM Peak Hour - 2044 To	tal – Unsig	nalized (E/V	V Stop)											
Victimine (pub) 94 4 22 32 52 52 52 52 52 52			Geometry		LTR			LTR			LTR			LTR			
20 Accounte (np) 20 Accounte			Volume (vph)	94	4	29	4	24	22	32	29	3	4	21	16		
17.5 17.5 18.5 19.5	_		v/c Ratio		0.18			90.0			0.02			0.00		0 2	<
212 Street	_		Delay (s)		11.0			6.6			2.6			0.7		9.	ζ
24 Avenue and Girlin Libration Libr	_		SOT		В			⋖			Α			A			
12 Street PM Realk Hout** 2544 Tital = Uniginalized EXV Street CHR CHR	90	20 Avenue and	95th Queue (m)		5			2			1			0			
Continue (ryph) 41 20 62 60 61 61 61 61 61 61 61	36	212 Street	PM Peak Hour - 2044 To	tal – Unsig	nalized (E/V	V Stop)									†	Ī	
Victorine (cyt) 41 20 62 9 10 61 50 6 18 70 78 Victorine (cyt) 11.5 11.5 11.1 4.2 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.00<			Geometry		LTR			LTR			LTR			LTR			
Victible	_		Volume (vph)	41	20	62	9	6	10	61	20	9	18	70	78		
11 12 13 14 15 15 15 15 15 15 15			v/c Ratio		0.18			0.04			0.04			0.01		,	
State Content State Conten			Delay (s)		11.5			11.1			4.2			6.0		5.4	∢
Mathematical Hourisotal Total - Unsignalized (EA) Stop) 11	_		TOS		В			В			Α			٨			
AMP Peak Hour - 2044 Total - Unsignalized (EVA Stop) Fig. 18 Avenue and State (PVA) Stop Stock Peak Hour - 2044 Total - Unsignalized (EVA Stop) Stock Peak Hour - 2044 Total - Unsignalized (ES Stop) Stock Peak Hour - 2044 Total - Unsignalized			95th Queue (m)		5			1			1			0			
Geometry LTR LT			AM Peak Hour - 2044 To	tal – Unsig	nalized (E/V	V Stop)											
Volume (yph) 11 16 11 46 12 6 39 9 9 9 18 19 10 10 10 10 10 10 10	_		Geometry		LTR			LTR			LTR			LTR			
Vic O O O O O O O O O			Volume (vph)	41	1	46	106	1	9	11	46	22	9	39	6		
11 11 11 11 11 11 11 1	_		v/c		0.10			0.16			0.01			0.00		6.7	<
18 Avenue and 15 Avenue (m) 3 3 5 5 5 5 5 5 5 5			Delay (s)		9.6			11.1			1.1			6.0		ò	ζ
18 Avenue and 95th Queue (m) 3 5 0 0 0 212 Street Publication (LVI) 19 2 21 42 24 84 84 92 14 86 37 Connerty 10 2 21 42 2 14 44 84 92 14 86 37 Colume (vph) 19 2 21 42 2 14 44 84 92 14 86 37 Colume (vph) 19 2 21 42 2 14 44 84 92 14 86 37 Colume (vph) 10 2 3 8 8 8 A A A A A Soft Queue (m) 269 -2 2 3 A C C C Colume (vph) 269 -2 2 2 C C C Colume (vph) 269 -2 2 C C Colume (vph) 269 -2 2 C C Colume (vph) 269 -2 C C Colume (vph) 269 -2 C C C Colume (vph) 269 -2 C Colume (vph) 269 269 269 Colume (vph) 269 269 269 Colume (vph) 269 269 269 Colume (_		TOS		Α			В			Α			٧			
The part Hour 2 204 Total – Unsignalized IE/W Stop) 1	72	18 Avenue and	95th Queue (m)		3			2			0			0			
Geometry 1TR TR TR TR TR TR TR T	'n	212 Street	PM Peak Hour - 2044 To	tal – Unsig	nalized (E/V	V Stop)											
Volume (vph) 19 2 21 42 2 14 84 92 14 86 37 37 Vic	_		Geometry		LTR			LTR			LTR			LTR			
y/c 0.06 0.10 0.03 0.01 3.6 Oclay(s) 1.08 1.20 1.7 0.9 1.8 Oclay(s) 8 8 1.0 1.7 0.9 1.8 1 Sth Queue (m) 2 3 1 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0 <td></td> <td></td> <td>Volume (vph)</td> <td>19</td> <td>2</td> <td>21</td> <td>42</td> <td>2</td> <td>14</td> <td>44</td> <td>84</td> <td>92</td> <td>14</td> <td>98</td> <td>37</td> <td></td> <td></td>			Volume (vph)	19	2	21	42	2	14	44	84	92	14	98	37		
Delay (s) Delay (s) 10.8 12.0 17.0 17.0 10.9 10.5			v/c		90.0			0.10			0.03			0.01		9 8	<
10S	_		Delay (s)		10.8			12.0			1.7			0.9		2	C
AM Peak Hour - 2041 Total – Unsignalized (EB Stop) 1 <t< td=""><td>_</td><td></td><td>TOS</td><td></td><td>В</td><td></td><td></td><td>В</td><td></td><td></td><td>Α</td><td></td><td></td><td>A</td><td></td><td></td><td></td></t<>	_		TOS		В			В			Α			A			
AMM Peak Hour - 2044 Total – Unsignalized (EB Stop) LT TR Geometry LR C	i		95th Queue (m)		2			3			1			0			
Geometry LR LR TR <			AM Peak Hour - 2044 To	tal – Unsig	nalized (EB	Stop)											
Volume (vph) 269 - 2 - 1 5 - 3 54 8-5 V/c V/c V/c 0.29 - 0.00 - 0.03 8-5 Delay (s) 10.4 - 10.4 - 1.2 - - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 - 0.	_		Geometry		LR			1			디			TR			
v/c 0.29 0.09 0.00 0.00 0.03 8.5 Delay (s) 10.4 10.4 - 1.2 - - 0.00 - 0.00 - 0.00 8.5 8.5 LOS LOS B - A - A - A A - A A - A A - A A - A A - A A - A A - A - A - A - A - A - - A - - - A -			Volume (vph)	569		2		,		П	2			3	54		
LOS B -	_		v/c		0.29					0	00	-	,	0.0	13	×	٥
LOS B - A - - A - A 14 Avenue and 209 Street 95th Queue (m) 10 -	_		Delay (s)		10.4					1	.2	-		0.0	0	3	
14 Avenue and 95th Queue (m) 10 - 0 - - 0 - 0 - 0 - - - 0 -			TOS		В					,	A			A			
209 Street PM Peak Hour - 2044 Total – Unsignalized (EB Stop) - LT TR Geometry LR - LT TR TR Volume (vph) 111 - 3 8 - - 9 240 v/c Olay - - 0.00 - - 0.15 3.2 Delay (s) 10.2 - - - - 0.0 - - 0.0 LOS B - - - - - - A 95th Queue (m) 4 - - - - - -	70	14 Avenue and	95th Queue (m)		10			,		J	0		,	0			
metry LR - LT TR TR me (vph) 111 - 3 8 - - 9 240 y (s) 0.14 - 0.00 - - 9 240 y (s) 10.2 - - 0.15 3.2 y (s) B - - 0.0 - - 0.0 Queue (m) 4 - - - - - A - - - - - - - - - - - - - - - 0.0 - <td>9</td> <td>209 Street</td> <td>PM Peak Hour - 2044 To</td> <td>tal – Unsig</td> <td>nalized (EB</td> <td>Stop)</td> <td></td>	9	209 Street	PM Peak Hour - 2044 To	tal – Unsig	nalized (EB	Stop)											
me (vph) 111 - 3 - 3 8 - - 9 240 y (s) 0.14 - - 0.00 - - 0.15 3.2 y (s) 10.2 - 2.1 - - 0.0 3.2 Queue (m) 4 - - - - A A	_		Geometry								L			TR			
y (s) 0.14 - 0.00 - - 0.15 3.2 y (s) 10.2 - 2.1 - - 0.0 3.2 Queue (m) 4 - A - A A A			Volume (vph)	111	,	3				3	8	-		6	240		
y (s) 10.2 - 2.1 - - 0.0 3.2 Queue (m) B - A - A	_		v/c		0.14			,		0.	00	-	1	0.1	.5	2.2	<
B - A - - - Queue (m) 4 - 0 - -			Delay (s)		10.2					2	.1		-	0.0	C	2:6	ζ
. 0			TOS		В					`	A			A			
			95th Queue (m)		4					_	0		1	0			

Table 6-6: Neighbourhood 2 Collector/Collector Intersection Summaries


Intersection		Approach		Eastbound			Westbound	_		Northbound			Southbound	_	Ove	Overall
Number	Intersection	Movement	٦	_	R	٦	T	R	7	_	R	٦	Τ	R	Delay	ros
		AM Peak Hour - 2044 Total – Unsignalized (EB Stop)	tal – Unsig	nalized (EB	Stop)											
		Geometry		LR						ᄓ			TR			
		Volume (vph)	1	,	80				15	2	-	,	2	1		
		v/c		0.08					0	0.01		1	0.0	0.00	7 7	<
		Delay (s)		8.8					۵)	5.5	-		0	0.0	/./	₹
		FOS		A						А		,	4	A		
,	10 Avenue and	95th Queue (m)		2						0	-	1		0		
41	209 Street	PM Peak Hour - 2044 Total – Unsignalized (EB Stop)	tal – Unsig	nalized (EB	Stop)											
		Geometry		LR						占			TR			
		Volume (vph)	2	,	27				99	6	-	,	10	2		
		v/c		0.03					0	0.04			0.0	0.01		<
		Delay (s)		8.7					, v	6.5			0	0.0	4.0	₹
		FOS		Α						А			4	A		
		95th Queue (m)		1						1		1	0	0		
		AM Peak Hour - 2044 Total – Unsignalized (EB Stop)	tal – Unsig	nalized (EB	Stop)											
		Geometry		LR						П			TR			
		Volume (vph)	2	-	83	-	-		94	11	-	1	15	5		
		v/c		0.09			-			90.0			0.01		0 2	<
		Delay (s)		0.6			-			6.7			0.0		0.7	ζ
		FOS		Α			-			Α			Α			
,	CSC2 Access and	CSC2 Access and 95th Queue (m)		2						2			0			
7	212 Street	PM Peak Hour - 2044 Total – Unsignalized (EB	tal – Unsig	nalized (EB	3 Stop)											
		Geometry		LR						П			TR			
		Volume (vph)	6	,	180	,		-	164	30		1	59	8		
		v/c		0.20						0.11			0.02		7	<
		Delay (s)		6.7						9.9			0.0		†. \	ζ
		FOS		Α			-			Α			А			
		95th Queue (m)		9						3			0			

^{*}Movement was projected to accommodate 0 vph; a nominal 5 vph was assumed in the assessment.

Table 6-7: Neighbourhood 3 Collector/Collector Intersection Summaries

Eastk	Eastk		æ	_	Westbound	A R	1	Northbound T	R	_	Southbound	~	Overall Delay	rall LOS
اانها	AM Peak Hour - 2044 Total - Unsignalized (E,		'W Stop)											
		LTR			LTR			LTR			LTR			
0.	99	2*	3	2*	2*	122	4	27	5*	21	16	25		
		0.18			0.14			0.00			0.01		8	٥
		12.3			9.3			0.8			5.6		j	:
		В			A			Α			٧			
		2			4			0			0			
al - Ur	sign	PM Peak Hour - 2044 Total - Unsignalized (E/W	/W Stop)											
		LTR			LTR			LTR			LTR			
51		2*	6	2*	2*	36	8	42	5*	101	48	88		
		0.12			90.0			0.01			0.07		-	<
		12.8			9.7			1.1			3.5		5.4	∢
		В			A			Α			۷			
	1	3			1			0			2			
al – Uns	igr	AM Peak Hour - 2044 Total – Unsignalized (EB Stop)	top)											
		LR			-			LT			TR			
66	1		23	1		1	44	8			18	25		
		0.15						0.03			0.03		7.7	<
		10.0			1			6.3			0.0		7:/	ζ
		В			-			А			Α			
		4						Ţ			0			
al – Ur	ısign	PM Peak Hour - 2044 Total – Unsignalized (EB Stop)	top)											
		LR			1			LT			TR			
26	5	-	89	-	-	-	20	23	-	-	14	94		
		0.15						0.03			90.0			<
		10.0						5.3			0.0		5.3	∢
		В						Α			A			
		4			1			1			0			

^{*}Movement was projected to accommodate 0 vph; a nominal 5 vph was assumed in the assessment.

6.6 Transit

Transit routing within Riverview NBHDs 1, 2, and 3 can be accommodated on all arterial and collector roadways. Based on the proposed roadway networks, transit access will be provided within 400 metres of the majority of new residential units.

It is noted that roadway upgrades are not proposed within the existing country residential subdivisions; therefore, opportunities to expand transit service into these area are limited. However, it is noted that the provision of transit along the new collector roadways will bring transit closer to the existing country residential land uses than currently provided.

6.7 District Park and School Sites

Vehicle access to the district park site is anticipated to be provided as the south approach of the Riverview Way/197 Street intersection and via 13 Avenue east of 199 Street. Access spacing along 199 Street is sufficient to accommodate a direct site access between 13 Avenue and Riverview Way; however, the vehicle access should coincide with the midblock pedestrian crossing.

The school sites have been located adjacent to collector roadways to facilitate vehicle, transit, school bus, and active modes access. It is recommended that pick up/drop off access and school bus activity be incorporated on-site to minimize congestion along the collector roadway network. As well, school site accesses should be aligned with opposing local road intersections and meet minimum collector roadway intersection spacing guidelines.

It is also suggested that the development of residential land uses with front drive access across from the school sites be limited to reduce the impact on adjacent residents.

The development of access to the school sites should consider best practices for school design. Available information regarding transportation facilities for schools can be found in such documents as the Institute of Transportation Engineer's School Site Planning, Design, and Transportation and the Survey of Practice for Signing and Markings Near Schools.

THIS PAGE INTENTIONALLY LEFT BLANK

7. TRANSPORTATION NETWORK STAGING

7.1 Short Term Development

The short term horizon selected for review generally reflects the development potential in Riverview prior to the extension of the South Edmonton Sanitary Sewer line across the North Saskatchewan River from Windermere. Based on preliminary engineering completed for Riverview NBHDs 1, 2, and 3, it is anticipated that approximately 2,900 dwelling units could be developed using an interim servicing strategy. Based on a development rate of 500 units/year, this reflects a short term development horizon of 2021 assuming a 2015 start date.

7.1.1 Short Term Assumed Roadway Network

The following arterial roadways are assumed to be developed by 2021 in conjunction with residential development in Riverview:

- 23 Avenue is assumed to be upgraded to a two-lane urban arterial from the Anthony Henday Drive/Cameron Heights interchange to the first collector (203 Street) west of 199 Street;
- 199 Street is assumed to be upgraded to a two-lane urban arterial from Wedgewood Creek to 18 Avenue; and,
- Riverview Way is assumed to be constructed as a two-lane urban arterial between 23 Avenue and 20 Avenue.

7.1.2 Short Term Background Traffic Volumes

Background volumes used in the assessment are based on a 2014 City of Edmonton intersection turning movement count at the 23 Avenue/199 Street intersection and AT's 2013 projections at the Anthony Henday Drive/Cameron Heights interchange. The Anthony Henday Drive/Cameron Heights interchange was under construction during AT's most recent count, and the extension of 23 Avenue into the Riverview ASP area did not exist. Therefore, traffic volumes measured on the east approach of the 23 Avenue/199 Street intersection were carried to the interchange and assigned to Anthony Henday Drive based on the existing distribution of traffic associated with the Cameron Heights neighbourhood.

For the purposes of this assessment, daily traffic volumes were estimated by multiply the sum of the AM peak hour and PM peak hour traffic volumes by six. However, daily volumes to/from the Cameron Heights neighbourhood at the Anthony Henday Drive/Cameron Heights interchange were based on AT's 2013 AADT estimates.

To account for growth in Parkland County and the surrounding areas, traffic volumes at the 23 Avenue/199 Street intersection and the Anthony Henday Drive/Cameron Heights interchange were increased at a rate of 2% per year.

7.1.3 Short Term Land Use Assumptions

Development within Riverview could progress in a number of different locations within NBHDs 1, 2, and 3 over the next five years. For the purposes of this assessment, the development has been assumed to be located centrally within the plan area, generally within the four quadrants of the 23 Avenue/199 Street intersection as illustrated in **Exhibit 7-1**. Only low density residential land uses were assumed within the short term. The shaded area on Exhibit 7-1 generally corresponds to the potential land area that could encompass 2,900 low density residential dwelling units. Although medium density and commercial sites may be created through subdivisions within these areas, they are not anticipated to be developed within the short term horizon.

The areas shown on Exhibit 7-1 were identified for analysis purposes only and do not reflect specific development stages. Other parcels within Riverview NBHDs 1, 2, and 3 may be developed in the short term; although, additional or different arterial roadway connections may be required.

7.1.4 Short Term Trip Generation

The City of Edmonton's low density residential rate was used for the short term analysis; however, no mode split adjustment was assumed. **Table 7-1** summarizes the short term trip generation.

AM Peak Hour PM Peak Hour Daily Land Use/ Intensity In Out In Out In Out Low Density Residential/ 380 1,621 1,535 756 11,484 11,484 2,900 du 2,001 2,291 22,968 Total Two-Way

Table 7-1: Short Term Trip Generation

7.1.5 Trip Distribution and Assignment

The City of Edmonton's 2019 origin-destination car driver trip tables were used for external residential trips within the assessment. Trips were assigned to the roadway network based on the assumed development patterns and collector roadway connections.

7.1.6 Short Term Roadway Assessment

The assessment of the short term roadway network includes the review of daily volumes on the key roadway segments impacted by the first stage development traffic, as well as a review of potential intersection operations at the 23 Avenue/199 Street intersection and Anthony Henday Drive/Cameron Heights interchange.

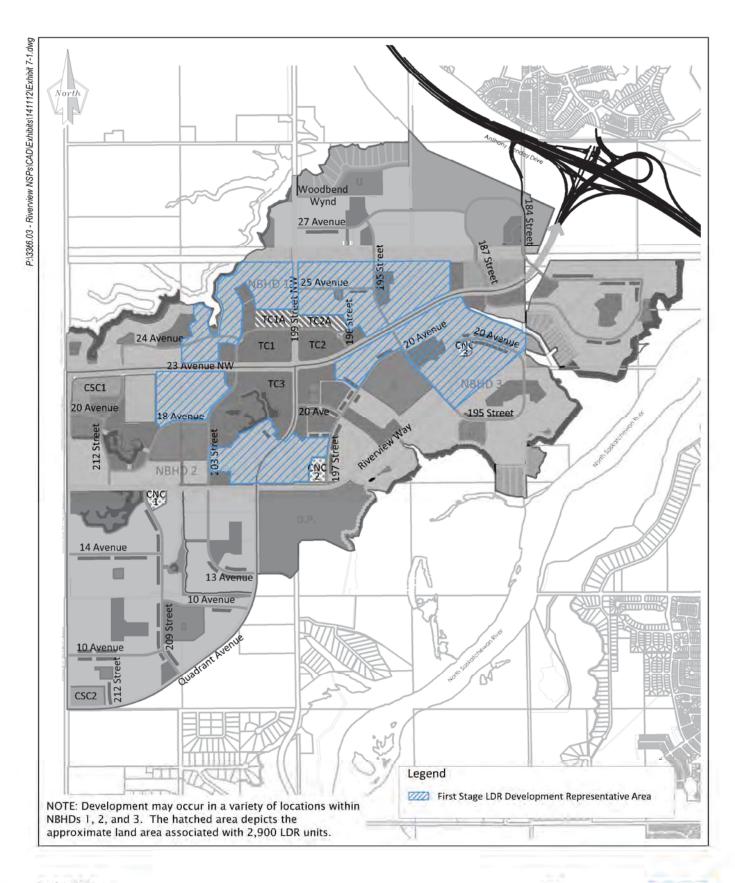


Exhibit 7-1

N.T.S.

Riverview NBHDs 1, 2 and 3 Assumed Short Term Development Area

Total Short Term Volumes

The site generated volumes were added to the background volumes to determine the total volumes for use in the assessment. The total daily volumes are summarized in **Table 7-2**.

Table 7-2: Short Term Daily Traffic Volumes

Roadway Link	From	То	Stage 1 Site Volumes	Background Volumes	Stage 1 Total Daily Volumes
23 Avenue	215 Street	203 Street	720 vpd	7,520 vpd	8,240 vpd
23 Avenue	203 Street	199 Street	4,750 vpd	7,520 vpd	12,270 vpd
23 Avenue	199 Street	Riverview Way	9,250 vpd	4,300 vpd	10,550 vpd
23 Avenue	Riverview Way	Anthony Henday Drive	13,160 vpd	4,300 vpd	17,460 vpd
199 Street	20 Avenue	23 Avenue	3,560 vpd	910 vpd	4,470 vpd
199 Street	23 Avenue	25 Avenue	5,590 vpd	4,100 vpd	9,690 vpd
199 Street	25 Avenue	Wedgewood Creek	9,080 vpd	4,100 vpd	13,180 vpd

The AM and PM peak hour volumes used in the assessment of the 23 Avenue/199 Street intersection are illustrated in **Figure 7-1**, while the peak hour volumes used in the assessment of the Anthony Henday Drive/Cameron Heights interchange are illustrated in **Figure 7-2**.

Figure 7-1: 23 Avenue/199 Street Total Short Term Volumes - AM (PM) Peak Hours

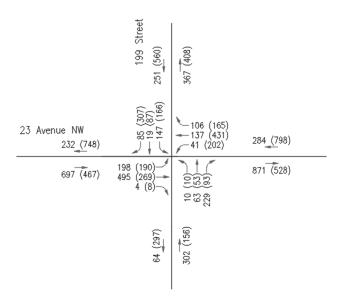
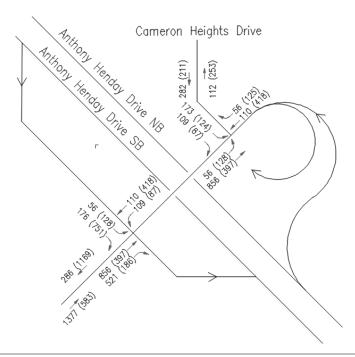



Figure 7-2: Anthony Henday Drive/Cameron Heights Interchange Total Short Term Volumes - AM (PM) Peak Hours

7.1.7 Short Term Arterial Roadway Assessment

Arterial Roadway Requirements

As shown in Table 7-2, 23 Avenue is anticipated to accommodate approximately 17,460 vpd between Anthony Henday Drive and Riverview Way, which exceeds the typical upper threshold for a two-lane arterial. Therefore, it is anticipated that 23 Avenue would require upgrading to a four-lane divided arterial between Anthony Henday Drive and Riverview Way within the 2021 horizon based on the assumed short term development intensity.

23 Avenue west of Riverview Way is anticipated to accommodate in the order of 8,240 vpd to 12,270 vpd within the 2021 horizon, which are within the upper thresholds for a two-lane divided arterial. It is anticipated that left turn bays will be developed at arterial/arterial and arterial/collector intersections as part of the construction of the first two urban arterial lanes; therefore, no additional widening is anticipated to be required along 23 Avenue within the 2021 horizon.

Daily volumes along 199 Street between 20 Avenue and 25 Avenue are in the range of 4,470 vpd to 9,690 vpd, which can be accommodated within a two-lane urban arterial. North of 25 Avenue, daily volumes are anticipated to approach 13,180 vpd. It is anticipated that these daily volumes can be accommodated along the first two urban arterial lanes, with the development of left turn bays at the arterial/collector intersections. However, upgrading to the ultimate four-lane divided cross-section is anticipated to be required shortly after 2021 if the pace of development assumed in this assessment is maintained.

23 Avenue/199 Street Intersection Assessment

The assessment assumes that the 23 Avenue/199 Street intersection would be signalized in the 2021 horizon. **Table 7-3** summarizes the results of the analysis assuming 23 Avenue is constructed as a two-lane undivided arterial with left turn bays on each approach.

Eastbound Westbound Northbound Southbound Movement L Т L Т R R L Т R AM Peak Hour - Pre-timed (90s cycle) Geometry L/TR L/TR L/TR L/TR Volume (vph) 198 495 4 41 137 106 10 63 229 147 19 85 0.13 0.29 0.02 0.40 0.16 v/c 0.38 0.56 0.43 Delay (s) 17.4 19.5 14.4 11.5 18.2 7.0 26.1 6.8 C LOS В В В В В Α Α 95th Queue (m) 39 92 12 48 5 26 38 13 Intersection Delay 15.2 **Intersection LOS** В PM Peak Hour - Pre-timed (90s cycle) L/TR L/TR Geometry L/TR L/TR Volume (vph) 190 269 8 202 431 165 10 53 93 166 87 307 v/c 0.57 0.27 0.34 0.60 0.06 0.27 0.47 0.65 Delay (s) 21.0 10.9 6.0 7.4 24.3 11.5 19.0 31.3 C В В LOS Α Α C C В 95th Queue (m) 45 38 m13 54 5 21 45 63 13.8 **Intersection LOS** В **Intersection Delay**

Table 7-3: 23 Avenue and 199 Street

As shown in Table 7-3, the 23 Avenue/199 Street intersection could operate at acceptable levels of service in the 2021 horizon based on the assumed development scenario, intersection geometry and traffic, control.

Anthony Henday Drive/Cameron Heights Interchange

The assessment assumes that the existing geometry and traffic control at the Anthony Henday Drive/Cameron Heights interchange remains in the 2021 horizon. **Table 7-4** summarizes the capacity analyses at the north ramp intersection, while **Table 7-5** summarizes the results of the capacity analyses at the south ramp intersection.

Table 7-4: Anthony Henday Drive and Cameron Heights Interchange North Ramp Intersection

	Eastb	ound	North	bound	South	bound
Movement	L	R	L	Т	Т	R
	AM	Peak Hour -	Pre-timed (90s cycle)		
Geometry	L/	′R	L/7	Г/Т	T/ ⁻	Γ/R
Volume (vph)	173	109	56	856	110	56
v/c	0.28	0.18	0.09	0.45	0.06	0.06
Delay (s)	23.2	5.2	3.6	5.0	11.0	3.4
LOS	С	Α	А	А	В	Α
95 th Queue (m)	39	11	m2	25	9	6
Interse	ection Delay		7.7	Intersec	tion LOS	Α
	PM I	Peak Hour -	Pre-timed (90s cycle)		
Geometry	L/	′R	L/7	Г/Т	T/~	Γ/R
Volume (vph)	124	87	128	397	418	125
v/c	0.20	0.15	0.26	0.21	0.22	0.13
Delay (s)	22.2	5.6	7.8	6.6	12.2	2.5
LOS	С	Α	Α	А	В	А
95 th Queue (m)	29	10	m10	13	28	8
Interse	ection Delay		9.6	Intersec	tion LOS	Α

Table 7-5: Anthony Henday Drive and Cameron Heights Interchange South Ramp Intersection

	ı	Eastbound		North	bound	Southb	ound
Movement	L	Т	R	Т	R	L	Т
	AN	1 Peak Ho	ur – Pre-tir	ned (90s c	ycle)		
Geometry		L/LT/R		T,	/R	L/T	/T
Volume (vph)	56	10*	176	856	521	109	110
v/c	0.0	08	0.32	0.74	0.51	0.47	0.05
Delay (s)	28	3.1	6.5	11.5	8.4	16.6	5.7
LOS	(2	Α	В	Α	В	Α
95 th Queue (m)	1	2	16	m87	m46	19	4
Intersec	tion Delay		10.7	Int	ersection I	LOS	В
	PM Peak Hou		ır – Pre-tin	ned (90s c	ycle)		
Geometry		L/LT/R		T/R		L/T/T	
Volume (vph)	128	10*	751	397	186	87	418
v/c	0.0	07	0.74	0.61	0.34	0.38	0.32
Delay (s)	11	.8	17.5	21.3	16.3	18.9	13.8
LOS	E	3	В	С	В	В	В
95 th Queue (m)	1	3	122	82	31	11	19
Intersec	tion Delay		17.0		ersection I		В

^{*}Movement was projected to accommodate 0 vph; a nominal 10 vph was assumed in the assessment.

As shown in Tables 7-4 and 7-5, the Anthony Henday Drive/Cameron Heights interchange is anticipated to operate at acceptable levels of service based on existing geometry and traffic control. No improvements to the interchange are projected within the 2021 horizon.

7.2 Staging of the Anthony Henday Drive and Cameron Heights Interchange Upgrades

The assessments completed for the Anthony Henday Drive/Cameron Heights interchange identified capacity constraints at the interchange upon full build out of the Riverview ASP area. Based on the assessments, it was recommended that an updated functional planning study be undertaken to confirm the ultimate design for the interchange; however, in the medium term the interchange as currently constructed can accommodate development in Riverview.

As shown in the short term staging assessment, the existing interchange can accommodate the initial 2,900 dwelling units at acceptable levels of service. Based on the assessments completed for the build out of the Riverview ASP area, the South Ramp intersection, the northbound on-ramp, the southbound onramp, and the southbound off-ramp are anticipated to require upgrades in order accommodate the projected 2047 total traffic volumes.

Based on a review of the capacity constraints noted above, and the review of the external traffic anticipated to be generated by development within Riverview NBHDs 1, 2, and 3, it is estimated that 70% of the residential lands, 45% of the total assumed build out commercial GFA, and 64% of the business employment lands within Riverview NBHDs 1, 2, and 3 could be developed prior to improvements being required at the Anthony Henday Drive/Cameron Heights interchange. In conjunction with this level of development, it is assumed that the district park/high school site and three elementary/junior high schools could also be developed.

The above noted limits represent a high level estimate of potential future traffic activity at the Anthony Henday Drive/Cameron Heights interchange based on the trip distribution and assignment assumptions used in the preparation of the build out scenario. It is noted that while capacity constraints may be noted at the Anthony Henday Drive/Cameron Heights interchange at this level of development, spare capacity is anticipated to be available on 199 Street and 215 Street.

As there are an infinite number of potential development scenarios that could occur in Riverview over the next 15 to 20 years, the medium term development scenario identified above is intended to provide a high level staging review, and is not intended to be used to set development thresholds on the neighbourhood. Traffic volumes and development activity within Riverview should be reviewed on an approximate five year basis to help identify timing for interchange improvements.

8. STUDY SYNOPSIS

This report provides an update to the Riverview ASP TIA based on the most current low density trip generation rates and the latest Riverview ASP land use development concept. The report also provides additional neighbourhood level information for Riverview NBHDs 1, 2, and 3.

8.1 Development Concept

The development of the ASP and NSP transportation networks was based on the following land use assumptions:

- The Riverview ASP area is focused around town centre and transit supportive land uses on the four corners of the 23 Avenue/199 Street intersection.
- Three CSC sites have been identified along 215 Street: on the southeast corner of the 23 Avenue/215 Street intersection, on the northeast corner of the Quadrant Avenue/215 Street intersection, and on the southeast corner of the Quadrant Avenue/215 Street intersection.
- Five CNC sites have been scattered throughout Riverview to provide convenience commercial land uses in close proximity to residential land uses.
- Business employment land uses located north of 23 Avenue and west of the TUC are proposed to include a mix of highway commercial and office land uses.
- Low density residential, row housing, low-rise apartments, and mixed use residential units are proposed within the plan area. A total of 20,781 dwelling units accommodating a population of 52,889 people are assumed to be developed in Riverview.
- Recreational land uses, schools, and park sites have been identified within the plan area to complement the residential, business employment, and commercial land uses resulting in a complete community.

8.2 Proposed Arterial Roadway Network

The proposed arterial roadway network is consistent with the network identified in the original Riverview ASP with the exception of Riverview Way, which was re-aligned along a straight east-west alignment to allow for the sustained retention of a natural/wetland area.

The proposed collector roadway network within Riverview NBHDs 1, 2, and 3 has also been refined to reflect the most current information regarding retained natural areas within the plan area and to create opportunities for a modified grid of local roadways within the residential areas. Transit connectivity within Riverview NBHDs 1, 2, and 3 and future connections to NBHD 4 were considered as the collector network was revised.

8.3 Active Modes Network

In addition to the standard road based transportation network within Riverview, which includes shared-use paths and sidewalks along arterial roads, sidewalks along collector and local roads, and on-street bicycle access on collector and local roadways, additional facilities are proposed to promote the use of active modes to travel within and through the neighbourhoods. The proposed network includes commuter and recreational routes providing connections to destinations within and external to the plan area.

8.4 Traffic Generation

The study area is projected to generate a total of 18,448 two-way gross AM peak hour trips, 26,647 two-way gross PM peak hour trips, and 293,504 two-way daily trips. Based on the pass-by trip assumptions for commercial land uses, an assumed 5% mode split to transit and active modes for residential and business employment land uses, and internal trip assumptions, the plan area is anticipated to generate in the order of 12,528 external two-way vehicle trips in the AM peak hour, 14,110 external two-way vehicle trips in the PM peak hour, and 148,824 external two-way vehicle trips on a typical weekday.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

The updates to the low density residential trip rates and the overall land use concept information for Riverview resulted in total trip generation estimates that are 13% to 22% lower than the trip generation estimates included in the Riverview ASP TIA. As a result, there are fewer potential congestion points along the network.

The updated land use concept for Riverview NBHDs 1, 2, and 3 also allowed for a more detailed review of the potential active modes network within the neighbourhoods. The combination of utility rights-of-way, natural areas, top-of-bank locations, stormwater management facilities, and the overall roadway network provides the opportunity to develop multiple facilities for short and longer distance trips to be made via active modes.

Overall, it is anticipated that the proposed transportation network provides an appropriate level of access to and within Riverview, consistent with the goals and objectives outlined in the Transportation Master Plan: The Way We Move.

9.2 Recommendations

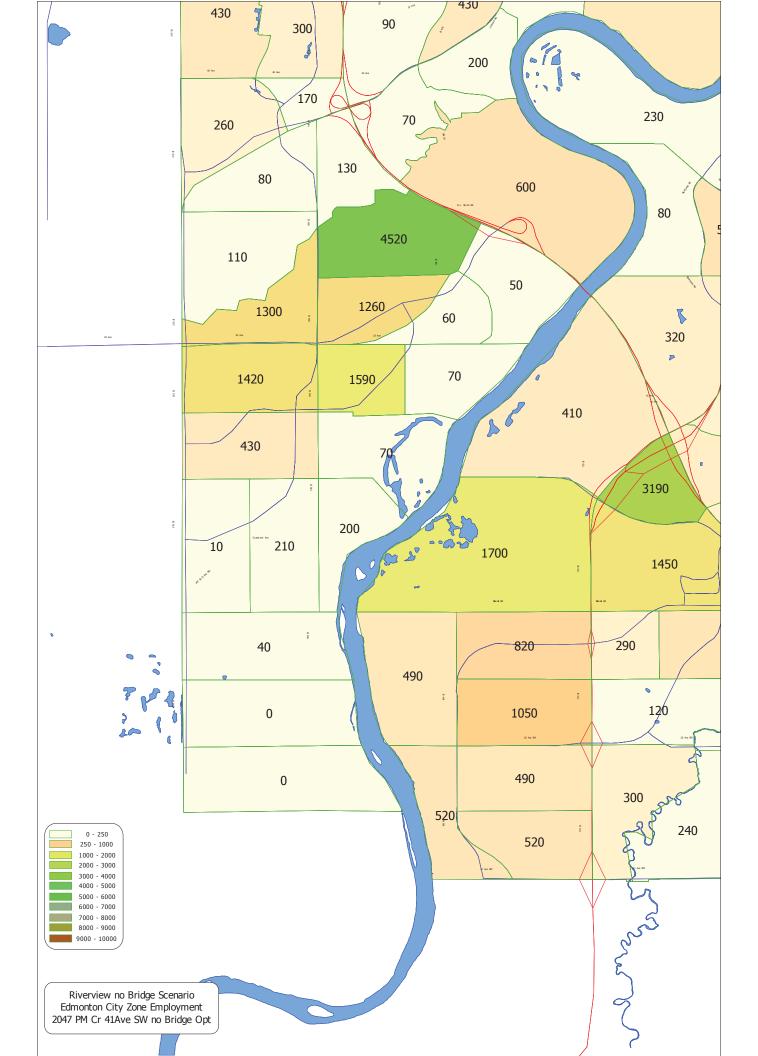
Table 9-1 summarizes the recommended arterial roadway cross-sections within the plan area based on the traffic assessment completed.

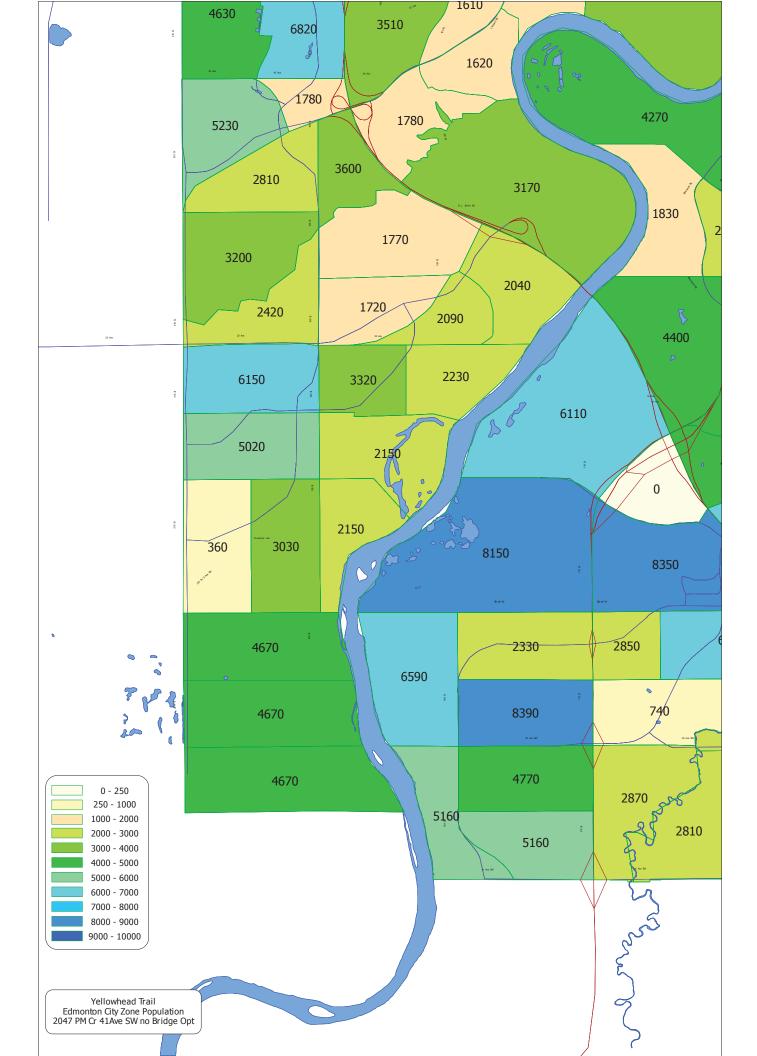
Table 9-1: Recommended Arterial Roadway Network Cross-Sections

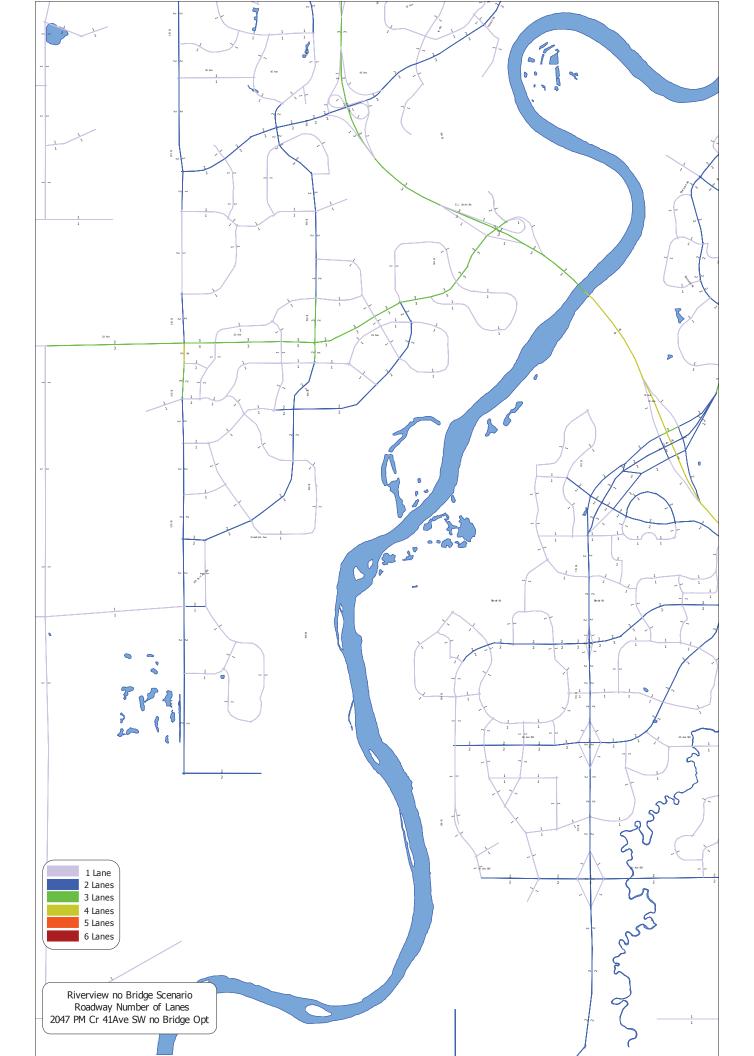
Arterial Roadway	From	То	Proposed Cross-Section
23 Avenue	Anthony Henday Drive	Riverview Way	6-Ln Divided Arterial
23 Avenue	Riverview Way	215 Street	4-Ln Divided Arterial
199 Street/Quadrant Avenue	Wedgewood Creek	215 Street	4-Ln Divided Arterial
215 Street	Wedgewood Creek	20 Avenue	6-Ln Divided Arterial
215 Street	20 Avenue	13 Avenue SW	4-Ln Divided Arterial
215 Street	13 Avenue SW	South City Limits	2-Ln Undivided Arterial
Riverview Way	23 Avenue	199 Street	4-Ln Arterial without left turn bays
Riverview Way	199 Street	215 Street	2-Ln Undivided Arterial

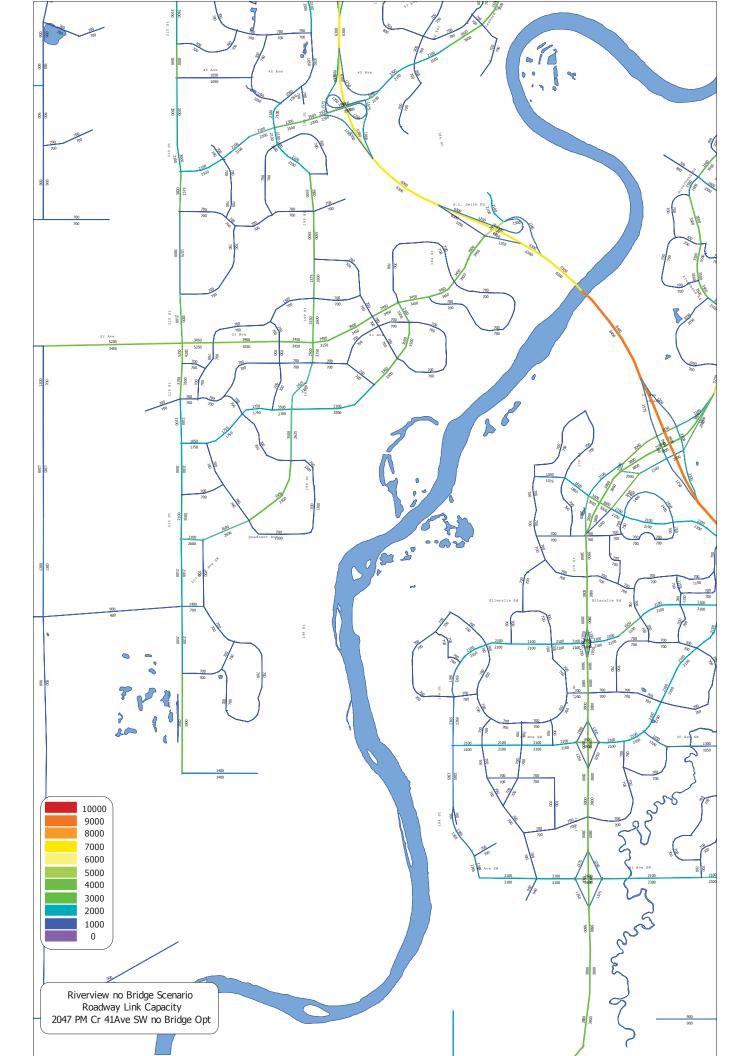
In addition to the recommended arterial cross-sections noted in Table 9-1, the following recommendations are advanced as a result of the intersection assessments completed for Riverview NBHDs 1, 2, and 3.

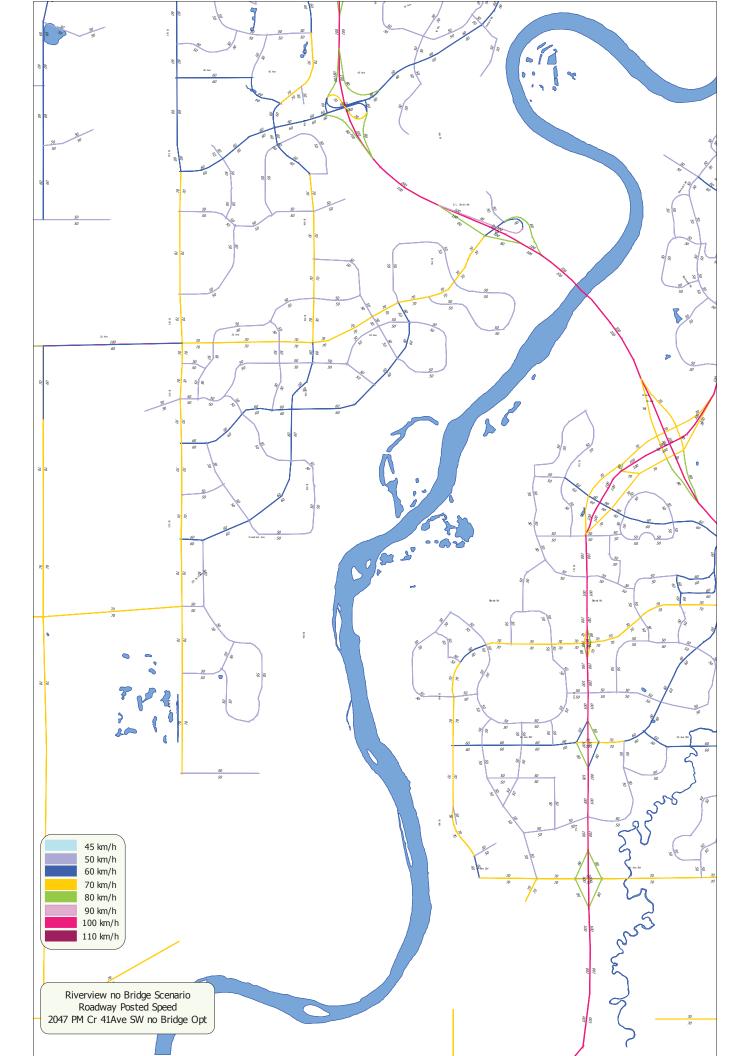
- An updated functional planning study should be completed for the Anthony Henday Drive/Cameron Heights interchange based on the 2047 total traffic volumes identified in this TIA;
- In consideration of the overall network implications, it is recommended that 23 Avenue and Riverview Way be developed as an all-directional T-intersection;
- Although the intersection analyses identified that single left turn bays would be appropriate on the
 north, south, west approaches of the 23 Avenue/199 Street intersection, it is recommended that
 sufficient right-of-way be protected to allow for the construction of two left turn bays on all four
 approaches in the future;
- The majority of the collector roadways within NBHDs 1, 2, and 3 can be developed as standard
 collector roadways that accommodate a minimum of two-travel lanes (one in each direction). On high
 volume collector roadways, additional capacity is recommended on the approach to the arterial
 roadways and can generally be provided through the development of appropriate channelization at the
 arterial/collector intersections;
- Additional analysis should be completed for the roadways surrounding the town centre land uses
 north of 23 Avenue (196 Street, 24 Avenue, 203 Street) to ensure appropriate capacity and access
 opportunities are provided. Based on the assessment completed, a three-lane cross-section is
 recommended for 24 Avenue (one lane in each direction plus left turn bays at accesses) if traditional
 stop controlled access points are developed. If roundabouts are developed along the corridor, a
 standard two-lane collector is anticipated to be appropriate;
- The design of 20 Avenue east of 199 Street should consider transit turning movements at the transit access:
- 25 Avenue west of 199 Street and 18 Avenue west of 199 Street should be developed as enhanced local roadways to accommodate free flow two-way traffic on the approaches to 199 Street; and,
- If ETS does not require the use of 212 Street north of 23 Avenue or 24 Avenue east of 212 Street for transit routing, these roadways can be constructed as local roadways.

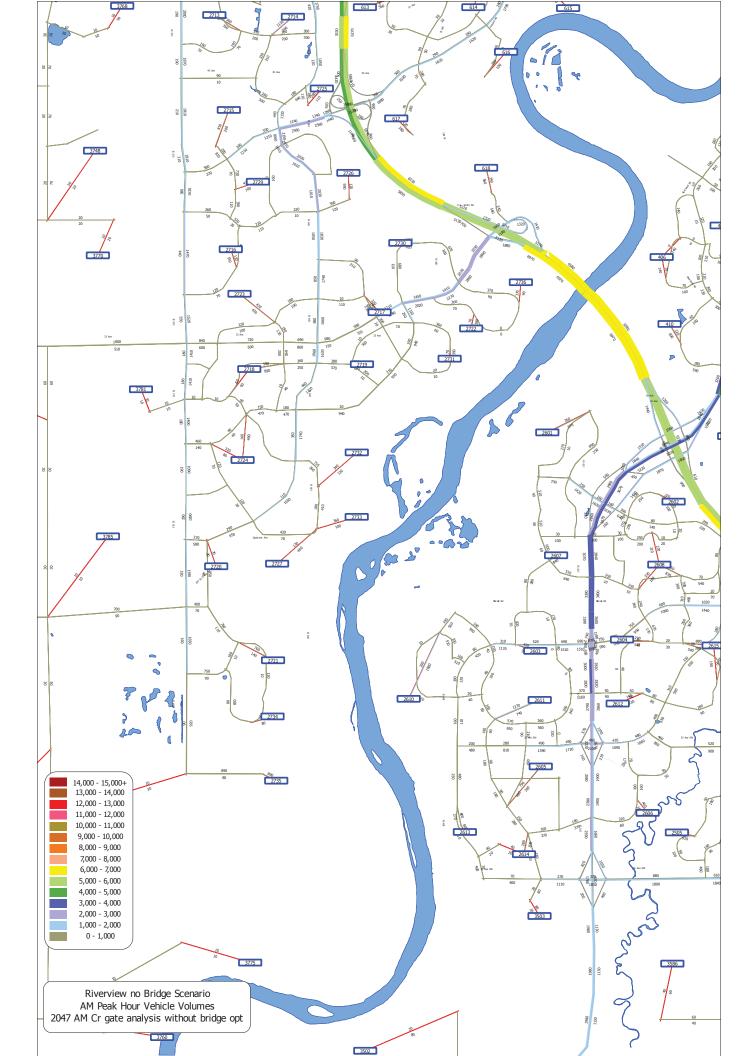

In addition to the above, the following general recommendations are advanced:

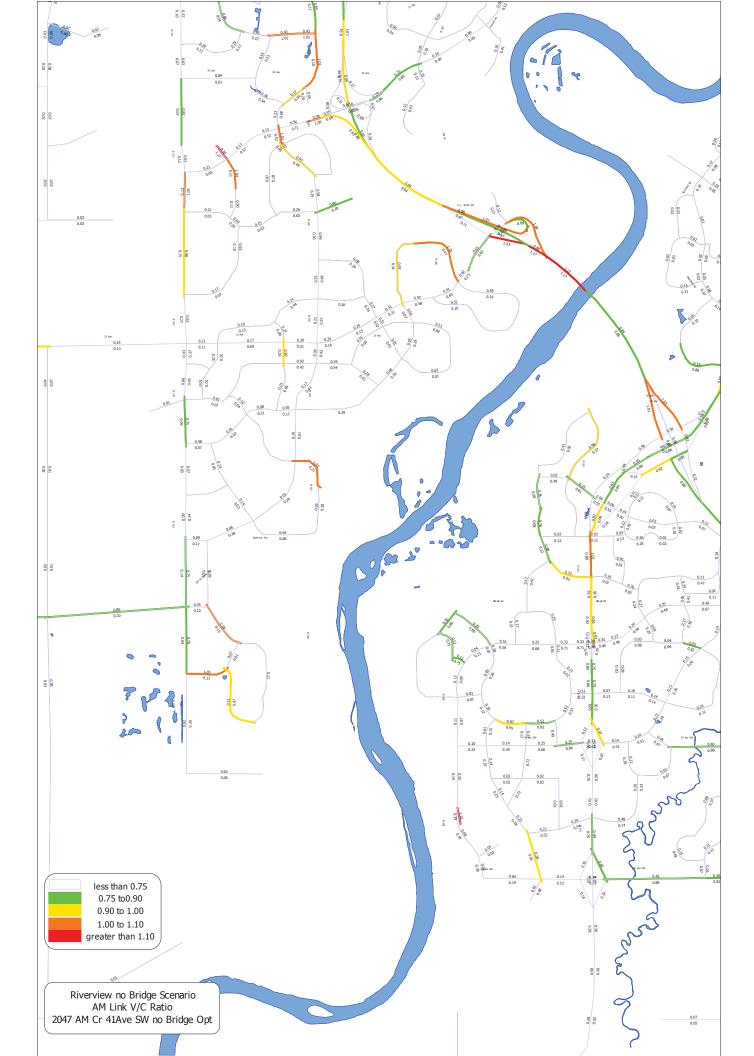

• The City of Edmonton's Complete Streets Guidelines should be used in the identification or crosssections for roadways within the town centre, around the transit centre, and along roadway segments that correspond with the active modes network;

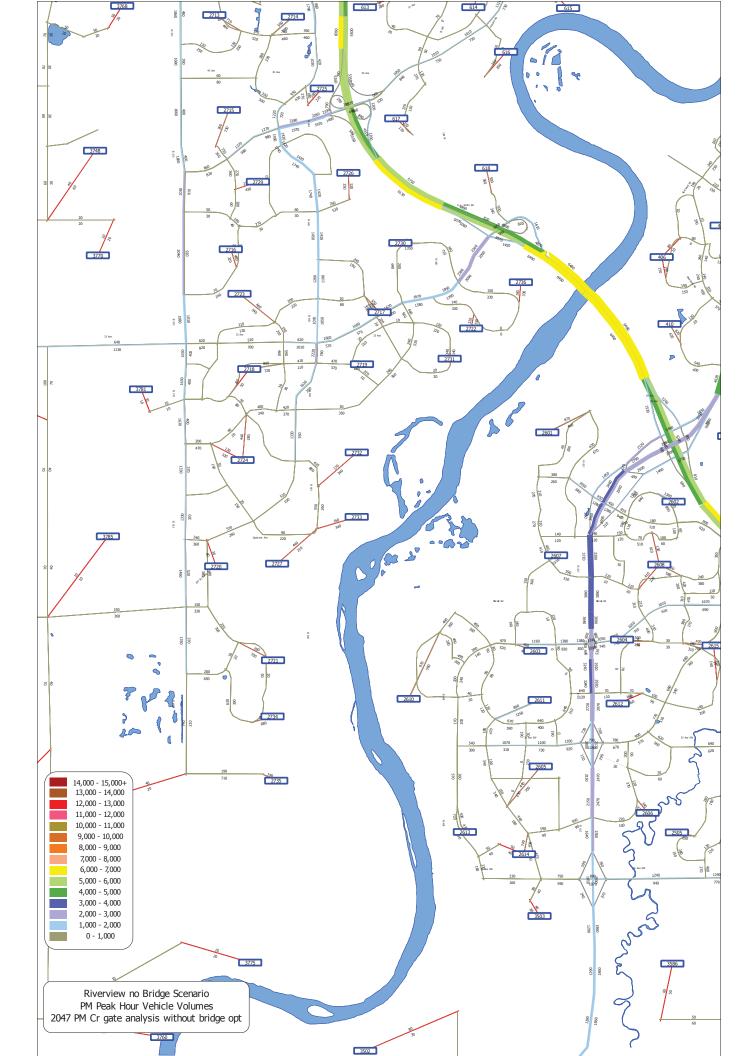

- Traffic volumes and development activity within Riverview should be reviewed on an approximate five year basis to help identify timing for improvements at the Anthony Henday Drive/Cameron Heights interchange.
- TIAs should be completed for school sites at the development permit stage to ensure that sufficient access capacity and on-site parent drop off and bus circulation space is provided to minimize congestion along the adjacent roadway network;
- School site accesses should be aligned at intersections, meet minimum intersection spacing guidelines, and should consider best practices for school site design;
- The development of residential land uses with front drive access across from the school site drop off areas should be limited to reduce the impact on adjacent residents;
- Opportunities to enhance transit connectivity and promote ridership with initial development stages should be explored;
- Frequent and reliable transit service, including midday service, that connects the residential, commercial, and employment land uses within Riverview ASP should be provided; and,
- Strategies to implement TDM programs at future employment and intuitional developments should be explored.

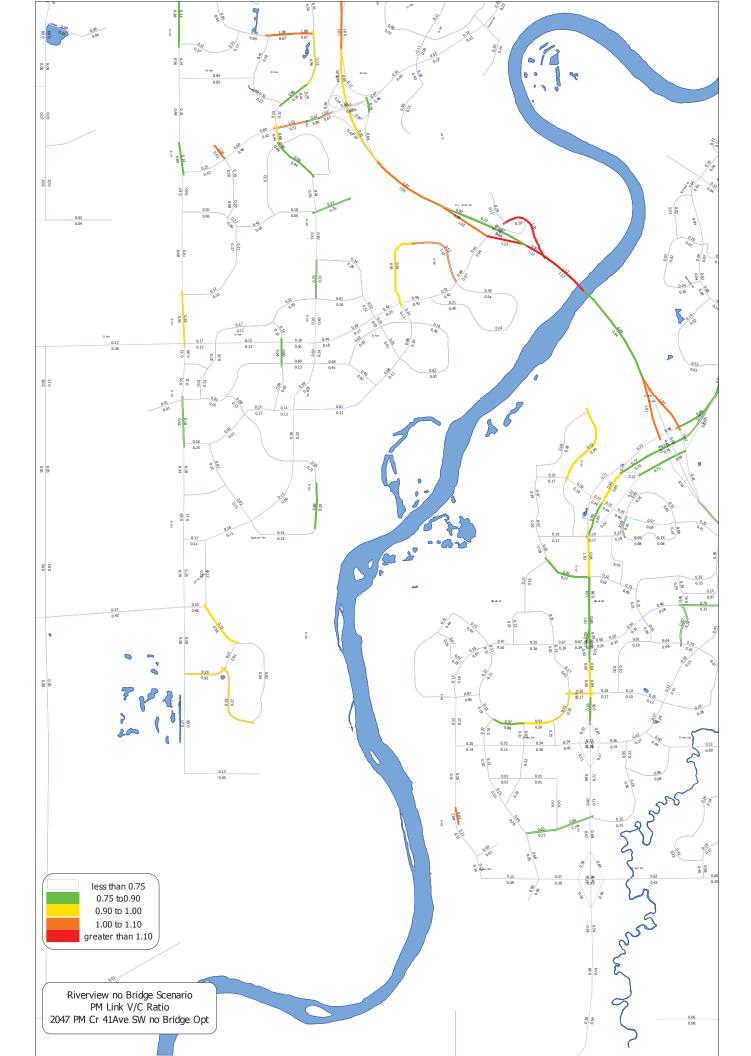

APPENDIX A

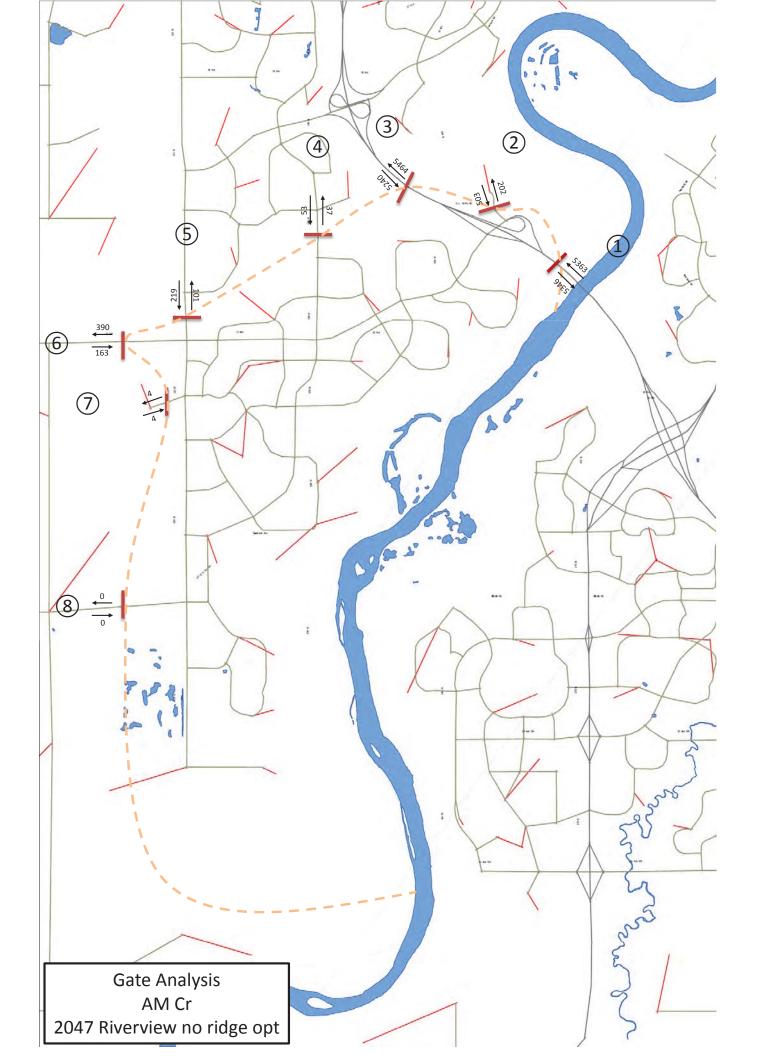

City of Edmonton 2047 Model Package

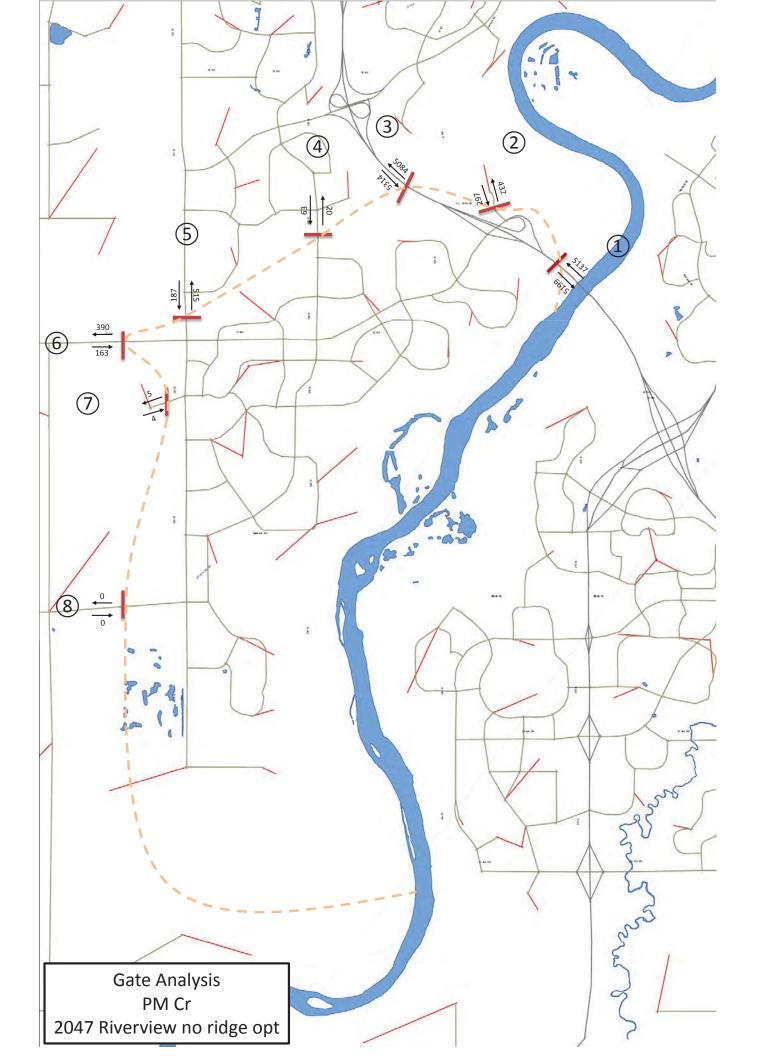


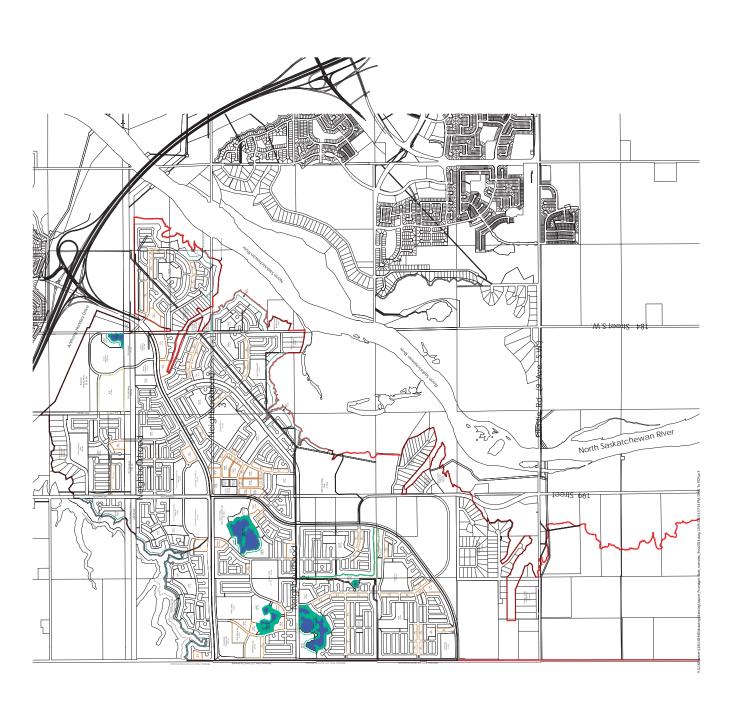












APPENDIX B

ASP and NSP Land Use Concepts and Statistics

Riverview NBHD 1 (October 9, 2014) Gross Area (NSP Boundary) 283.36 ha Area Boundary) 283.36 ha Area Boundary 251.37 ha Boundary 251.37 ha Area Boundary 251.37 ha Area Boundary 251.37 ha Area Boundary 251.37 ha Area Marca Area (GDA) 223.92 ha Area Marca Marca COD (2017) Area Marca Marca Marca COD (2017) Area Marca M

Riverview NBHD 2 (October 9, 2014)	4
Gross Area (NSP Boundary) 315.08 ha	ha
Arterial Roadway 21,90ha PUL 2,41ha PUL - Iransmisson Facility 7,72ha Environmental Reserve (Wetland) 20.14 ha	21.90ha 2.41ha 7.72ha 20.14ha
Gross Developable Area (GDA) 262.91 ha	1 ha
Municipal Reserve 24.10 ha (9.16 % of GDA)	DA)
Natural Area (MR Credit) 4.8 Upland (MR) 1.2 School/Park 16.4 Pocket Park 1.3 Greenway 0.3	481ha 123ha 1644ha 130ha 032ha
Storm Water Management Facility 19.7 Circulation (20%) 52.8	19.13 ha 52.58 ha
Land Uses	
Septe Sort detached 111 fish is a Market Machine Dendy House (11 fish is a Machine Dendy House) 8 47 in Market Uses (15 fish is a Market Uses (15 fi	21.65 ha 11.29 ha 8.42 ha 5.30 ha 1.76 ha 8.74 ha

Riverview NBHD 3 (October 9, 2014)	, 2014)
Gross Area (NSP Boundary)	314.90 ha
Arterial Roadway Put. Environmental Reserve 108 Existing Country Residential	15.92 ha 3.16 ha 10.30 ha 15.83 ha
Gross Developable Area (GDA)	269.69 ha
Municipal Reserve 51.70 ha (19.17 % of GDA)	% of GDA)
Dk trici Acrivity Park Urban Village Park School / Park Pocket Park	34.29 ha 3.35 ha 12.10 ha 1.96 ha
Storm Water Management Facility Circulation (20%)	14.34 ha 53.94 ha
Land Uses	
Single/Sernt-detached Row Housing Low/ree / Medium Density Housing Madd Uses CNC Frankt Cente	11885 ha 11.33 ha 14.17 ha 0.97 ha 2.95 ha 1.44 ha

Riverview ASP Update stats based on Oct 9, 2014

	NBHD 1	NBHD 2	NBHD 3	NBHD 4	NBHD 5	Total
Gross Area	283.85	315.08	314.90	187.70	331.20	1,432.73
Natural Area	5.63	20.14	10.30	-	-	36.07
Pipeline & Utility ROW	2.28	2.41	3.16	-	-	7.85
Altalink Power Corridor	21.37	-	-	-	-	21.37
Public Utility - Comunications Facility	-	7.72	-	-	-	7.72
Arterial Road ROW	15.05	21.90	15.92	5.30	4.00	62.17
Existing Land Uses						-
Residential	15.60	-	15.83	66.40	18.60	116.43
Urban Village Park	-	-	-	-	-	-
Natural Area	-	-	-	- 116.00	20.40	20.40
Gross Developable Area	223.92	262.91	269.69	116.00	288.20	1,160.72
Commercial						
Town Centre Commercial	6.74	8.74	-	_	-	15.48
Community Commercial	14.63	9.94	-	4.00	-	28.57
Mixed Use		-	0.49			
Neighbourhood Commercial	-	1.76	2.95	1.00	1.00	6.71
Business Employment	41.72	-	-	-	-	41.72
Parkland, Recreation, School (Municipal Reserve)						-
District Park	-	-	34.29	-	-	34.29
School/Park	-	16.44	12.10	-	9.50	38.04
Urban Village Park/Pocket Park/Greenway	8.13	1.62	5.31	3.90	6.10	25.06
Natural Area	1.11	6.04	-	4.80	12.00	23.95
Transportation	44.78	52.58	53.94	23.20	57.60	232.10
Transit Centre	-	-	1.44	-	-	1.44
Stormwater Management	14.79	19.13	14.34	8.90	22.20	79.36
Total Non-Residential Area	131.90	116.25	124.86	45.80	108.40	526.72
Net Residential Area (NRA)	92.02	146.66	144.83	70.20	179.80	634.00
Residential Land Use						
Single/Semi Detached	86.14	121.65	118.85	60.20	163.80	550.64
Row Housing	1.23	11.29	11.33	6.00	6.00	35.85
Low-rise/Multi/Medium Units	4.65	8.42	14.17	4.00	9.00	40.24
Residential Mixed Use	0.00	5.30	0.48	0.00	0.00	5.78
High Density	0.00	0.00	0.00	0.00	1.00	1.00
Total	92.02	146.66	144.83	70.20	179.80	633.51
Residential Dwelling Units						
Existing Residential						180
Single/Semi Detached (@25 du/ha)	2154	3041	2971	1505	4095	13766
Row Housing (@45 du/ha)	55	508	510	270	270	1613
Low-rise/Multi/Medium Units (@ 90 du/ha)	419	758	1275	360	810	3622
Residential Mixed Use (@ 90 du/ha or 150 du/ha)	304	874	197	0	0	1375
High Density (@ 225 du/ha)	0	0	0	0	225	225
Total	2932	5181	4953	2135	5400	20781
Residential Population						
Existing Residential						496
Single/Semi Detached (@2.8 people/du)	6031	8515	8319	4214	11466	38545
Row Housing (@ 2.8 people/du)	154	1422	1428	756	756	4516
Low-rise/Multi/Medium Units (@ 1.8 people/du)	754	1364	2295	648	1458	6519
Residential Mixed Use (@ 1.8 du/ha)	547	1573	355	0	0	2475
High Density (@ 1.5 people/du)	0	0	0	0	338	338
Total	7486	12874	12397	5618	14018	52889

Town Centre, Commercial, and Mixed Use Site Areas

Town Centre, Commercial, and Mixed Ose Site				Estimated
Retail Commercial Land Use Assumptions	Area (ha)	% of Site	FAR	GFA (SF)
Town Centre West (TC1)	8.47	100%	0.25	227,900
Town Centre Mixed Use West (TC1A)	3.48	100%	0.5	187,300
Town Centre East (TC2)	6.16	100%	0.25	165,800
Town Centre Mixed Use East (TC2A)	3.26	100%	0.5	175,500
Town Centre South (TC3)	7.74	100%	0.25	208,300
Town Centre South (TC3) Main Street	1.00	100%	1	107,600
Transit Centre Mixed Use 1 (NBHD 3)				
(50% Retail/50% Residential)	0.49	100%	1	52,700
CSC 1 (NBHD 2)	6.40	100%	0.25	172,200
CSC 2(NBHD 2)	3.54	100%	0.25	95,300
CSC 3 (NBHD 4)	4.00	100%	0.25	107,600
CNC 1 (NBHD 2)				
(Mixed Use 50% Retail/50% Residential)	1.76	50%	0.25	23,700
CNC 2 (NBHD 3)				
(Mixed Use 50% Retail/50% Residential)	1.97	50%	0.25	26,500
CNC 3 (NBHD 3)	0.98	100%	0.25	26,400
CNC 4 (NBHD 4)	1.00	100%	0.25	26,900
CNC 5 (NBHD 5)	1.00	100%	0.25	26,900
Total Assumed Retail Commercial GFA	51.25			1,630,600

APPENDIX C

Trip Generation

3366.03 - Riverview NBHDs 1-3 NSPs 09-Oct-14 Statistics Source: Stantec - October 9, 2014 Plan

					AM Deel Lieu				20	man Jacob					:1:50		
			•		AM Peak nour			•	N.	гм геак поиг					Dally		
Land Use	Ō	Units	Rate		ln	Out	ıt	Rate	ln		Out	t	Rate	u In		Out	t
Residential - Existing & Single Unit	13,946	units	69.0	19%	1,828	81%	7,794	0.79	%29	7,382	33%	3,636	7.92	20%	55,226	20%	55,226
Residential - Townhouse	1,613	units	0.46	21%	156	79%	586	0.58	%59	809	32%	327	6.59	%09	5,315	%09	5,315
Residential - Low-Rise Apartment	3,622	units	0.34	17%	209	83%	1,022	0.40	%89	913	37%	536	5.81	20%	10,522	20%	10,522
Residential - Mixed Use	1,375	units	0.34	17%	79	83%	388	0.40	%89	347	37%	204	5.81	%09	3,994	%09	3,994
Residential - HDR	225	units	0.34	17%	13	83%	63	0.40	%89	22	37%	33	5.81	%09	654	%09	654
				2,	2,285	9,853	53		9,307	7(4,736	91		75,711	11	75,711	11
Total Residential	20,781				12,138	38				14,043	13				151,422		
Town Centre West (TC1 & TC1A)	415,200	SF			389		224			1,066		926			10,414		10,414
Town Centre East (TC2 & TC2A)	341,300	SF			322		215			808		853			9,976		9,976
Town Centre South (TC3)	315,900	SF			312		209			772		814			9,576		9,576
CSC 1 (NBHD 2)	172,200	SF			242		167			543		292			6,971		6,971
CSC 2 (NBHD 2)	95,300	SF	4.02	23%	203	47%	180	8.38	48%	383	25%	415	90.69	%09	3,291	%09	3,291
CSC 3 (NBHD 4)	107,600	SF	4.02	23%	229	47%	203	7.90	48%	408	25%	442	66.19	%09	3,561	%09	3,561
Transit Centre Mixed Use (NBHD 3)	52,700	SF	4.02	23%	112	47%	100	10.38	48%	263	25%	284	84.98	%09	2,239	20%	2,239
CNC 1 (NBHD 2)	23,700	SF	5.62	22%	73	45%	60	8.72	48%	66	25%	107	112.40	20%	1,332	%09	1,332
CNC 2 (NBHD 3)	26,500	SF	5.62	22%	82	45%	67	9.29	48%	122	25%	132	108.09	20%	1,432	%09	1,432
CNC 3 (NBHD 2)	26,400	SF	5.62	22%	82	45%	67	9.57	48%	121	25%	131	108.24	20%	1,429	%09	1,429
CNC 4 (NBHD 4)	26,900	SF	5.62	22%	83	45%	68	69.6	48%	125	25%	136	107.53	20%	1,446	%09	1,446
CNC 5 (NBHD 5)	26,900	SF	5.62	22%	83	45%	68	69.6	48%	125	25%	136	107.53	20%	1,446	%09	1,446
Business Employment	3,200	employees	0.48	88%	1,352	12%	184	0.46	17%	250	83%	1,222	3.32	%09	5,312	20%	5,312
Highway Commercial	675,000	SF			451		235			387		457			5,487		5,487
District Park	163,000	SF			150		86			284		198			2,382		2,382
High School	2,350	students			0		0			0		0	1.71	%09	2,009	%09	2,009
Elementary/Jr High	3,750	students			0		0			0		0	1.46	%09	2,738	%09	2,738
				4,	4,165	2,145	45		5,756	99	6,848	ø,		71,041	141	71,041	41
Total Commercial / Hotel					6,310	10				12,604	14				142,082	82	
				6,	6,450	11,998	86		15,063	63	11,584	34		146,752	752	146,752	.52
Total Area					18,448	48				26,647	21				293,504	04	

			Estimated	
Non-Residential Assumptions	Area (ha)	FAR	GFA (SF)	
Business Employment	29.72		1279600	3200 Employees 710 - General Office Building
Highway Commercial	12.0			
Assume 250 rooms/hotel	4.5	3.0	750	525000
Assume 30,000 SF Car Dealership	12.5	5.0	150000	
Schools				
High Schools - Assumed	1550 students public, 800 cat 2350	ublic, 800 cat	2350	530 - High School
Elementary/Jr Highs - Assumed 5	750 students per school	r school	3750	Average of 520 - Elementary and 522 - Middle/Jr High
District Activity Park assumed to include a 100 000 SE recreation centre twin ice arenas, and 7 playing fields	a 100 000 SE recre	ation centre	hwin ice aren	ac and 7 playing fields

1	Town Centre West (TC1 &TC1A)				A	AM Peak Hour				PM	PM Peak Hour					Daily		
Experimental Polysphore Polysph	Land Use	Unit	S	Rate	ı			t	Rate	ul II			ıt	Rate	ı		On	ţ
Third Commercial Control Contr	Discount Superstore (City Superstore/813)	150,000		1.86					6.52					50.75				3806
Triang Commendation Section Se	Fast Food (City/934)	Ш	SF	20.27	21%	52	49%	20	13.89	45%	31	25%	38	496.12	20%	1240	20%	1240
Treat Commercial 15,000 St. 10,000 St.	CRU 820 Fitted Curve	260,200	SF	0.89	%29	144	38%	88	3.75	48%	468	25%	202	41.26	%09	5368	%09	5368
Trais Commercial Station Stati					63%			224		23%	1,066	47%	926		20%	10,414	20%	10,414
Second	Total Commercial	415,200	SF	1.48		613	~		4.87		2,0;	22		50.16		20,8	328	
Compacing Comp	Town Centre East (TC2)				×					PN	Peak Hou	L				Daily		
Predictive 245,000 Sept. 344,000 Sept. 345,000 Sept.	l and Ilsa	Ilai	ų	Rate	1				Rate	2			+	Rate			Ĉ	
Trial Commercial Sign Si	Grocery Store 850			3.40					9.48					102.24				2300
Princic Chronic Chro	Fast Food (City/934)	5,000	SF	20.27	51%	52	49%	20	13.89	45%	31	25%	38	496.12	20%	1240	20%	1240
Trial Commercial Statistic Statistic	CRU 820 Fitted Curve	291,300	SF	0.97	62%	175	38%	107	4	48%	229	52%	909	44.19	20%	6436	20%	6436
Total Commercial Septiminary Septimin					%09			215		46%	808	21%	853		20%	9,976	20%	9,976
Part	Total Commercial	341,300	SF	1.57		53.			4.87		1,6	31		58.46		19,9	952	
Size State Color State C	(00±) 17 0 ±				ľ						:					:		
Supplicity Su	Iown Centre South (IC3)				V	_			-	A N	Peak Hou							
Columbicação Colu	Land Use	- 1		Rate			- 1		Rate			- 1		Rate				
Charley School SF 202 SF 202 SF SF SF SF SF SF SF S	Grocery Store 850	45,000	SF	3.40	%29	92	38%	58	9.48	21%	218	49%	209	102.24	20%	2300	20%	2300
Triang Commercial Signo SF 1 0.00 Circle Chure Signo SF 1 0.00 Circle Chure Signo SF 1 0.00 Circle Chure Signo S	Fast Food (City/934)	5,000	SF	20.27	21%	52	49%	20	13.89	45%	31	22%	38	496.12	20%	1240	20%	1240
Tradic Commercial Trad	CRU 820 Fitted Curve	265,900	SF	1.00	%29	165	38%	101	4.1	48%	523	25%	267	45.4	20%	9609	20%	9609
Total Commercial Strict Commercial Stric					%09			209		46%		21%	814		20%	9,576	20%	9,576
Name	Total Commercial	315,900	SF	1.65		52,			5.02		1,5	36		60.63		19,1	52	
Supple Sign	CSC 1 (NBHD 2)				ľ	M Peak Hou				PM	Peak Hou					Daily		
Control Commercial Commerci	Land Use		S	Rate	_			t	Rate	<u>r</u>			ıt	Rate	_		nO	ı
Signature Sign	Grocery Store 850	45,000	SF	3.40	62%	92	38%	58	9.48	21%	218	46%	209	102.24	20%	2300	20%	2300
Total Commercial T12,200 SF 1.26 59%	Fast Food (City/934)	2,000	SF	20.27	21%	52	46%	20	13.89	45%	31	22%	38	496.12	20%	1240	20%	1240
Total Commercial T72.00 SF 2.89 242 41% 167 6.43 51% 56% 56% 567%	CRU 820 Fitted Curve	122,200	SF	1.26	%29	92	38%	26	5.01	48%	294	25%	318	56.15	20%	3431	%09	3431
Total Commercial T72,200 SF 2.38 AM Peak Hour SF Commercial T72,200 SF Commercial					29%			167		49%		21%	565		20%	6,971	20%	6,971
V Commercial Interest of the control of	Total Commercial	172,200	SF	2.38		406			6.43		1,1	38		80.96		13,9	342	
Part Park Tourier Class Part Park Park Class Part Park Class P					•											:		
Duties Duties Duties Rate In Duties Rate In Duties Rate In Duties In In Duties In	Highway Commercial				∢				F	ī	Реак нос					Dally		
Color Colo	Land Use		S	Rate					Rate				- 1	Rate			- 1	
Total Commercial 525,000 SF 1.92 75% 216 24% 72 2.62 46% 457 66% 451 34% 457 66% 451 34% 456 457 66% 451 34% 457 66% 451 46% 451 46% 457 46% 457 46% 457 46% 457 46% 457 46% 457 46% 457 46% 457 46% 46% 457 46%	Hotel (LUC 310)	750	rooms	0.53	%69	235	41%	163	09.0	21%	230	49%	221	8.17	20%	3064	%09	3064
Park Luc	Car Dealership (LUC 841)	150,000	SF	1.92	75%	216	25%	72	2.62	40%	157	%09	236	32.3	20%	2423	20%	2423
Park Units Rate In I					%99			235		46%			457		20%	5,487	20%	5,487
Park Units Rate In Out Rate In	Total Commercial	525,000	SF	1.31		989	1 0		1.61		84	4		20.90		10,8	374	
see Units Rate In Out Columnation Seats	District Park				ľ					PN	Peak Hou					Daily		
Arena (LUC 495) 100,000 Seats 0.05 66% 135 34% 70 2.74 49% 134 51% 414 33.82 50% 1691 50% Arena (LUC 465) 700 seats 0.05 30% 11 70% 25 0.12 80% 67 20% 17 1.26 50% 441 50% 441 50% 441 50% 441 50% 441 50% 250 50%	Land Use	Unit	s,	Rate	_			1	Rate	-			ıt	Rate	_		nO	
Applies (LUC 486) 700 seats of 10.05 acits 11 70% acits 25 out 2 bit out 20.05 acits 11 12 out 20.05 acits 12 out 2	Rec Centre (LUC 495)			2.05			34%	70	2.74			1 1		33.82			20%	1691
Fields (LUC 48g) 7 fields (LUC 48g) 7 fields (LUC 48g) 7 60% 4 3% 4 3% 4 1 71.33 50% 250 50%	Hockey Arena (LUC 465)	700	seats	0.05	30%	11	%0/	25	0.12	%08	29	20%	17	1.26	20%	441	20%	441
Total Commercial 163,000 SF 1.52 60% 150 40% 150 2.96 284 41% 198 2.98	Playing Fields (LUC 488)	7	fields	1.12	25%	4	43%	က	17.7	%29	83	33%	41	71.33	20%	250	20%	250
Sse Units Rate In Out A84 50% 484 50% 608 608 50% 608 608 608 608 60% 608 608 608 608 60% 608 60% 608 60% 608 60% 608 </td <td>Total Commercial</td> <td>163,000</td> <td>SF</td> <td>1.52</td> <td>%09</td> <td></td> <td></td> <td>886</td> <td>2.96</td> <td>%69</td> <td></td> <td></td> <td>198</td> <td>29.23</td> <td>%09</td> <td>2,382</td> <td>50% </td> <td>2,382</td>	Total Commercial	163,000	SF	1.52	%09			886	2.96	%69			198	29.23	%09	2,382	50%	2,382
See Units Rate In Out PM Peak Hour Out Out Out PM Peak Hour Out PM Peak Hour Out Out Out PM Peak Hour PM Peak Hour <th< td=""><td>Ш</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ш																	
Units Rate In Out Rate In Out Rate In Out A84 50% Out Sindents 350 students 350 <	School			•	A				-	PN	Peak Hou	_				Daily		
750 students 760 students 760 students 760 students 760 students 760 800	Land Use	Uni	S	Rate	-		no	t	Rate	므		ō	ıt	Rate	-	_	nO	ţ
750 students 608 50% 608 50% ites 150 1.62 50% 608 50% 150 1.031 50% 1.091 50%	Elementary School	750	students											1.29	20%	484	%09	484
1500 1.051 50% 1.051 50% 2.183	Middle School/Jr High School	750	students											1.62	20%	809	20%	808
	Average School Rates	1500		_										1.455	20%	1,091	50%	1.60,1

APPENDIX D

Catchment Areas

Commercial Distribution

West Suburb Neighbourhoods

West Suburb Neighbourhoods					
Najahh ayah a da	Donalskien	Carran	% of	% of 7km	Riverview, Edgemont, Cameron Heights, & Parkland
Neighbourhoods	Population	Source	Total	Radius	County
Callingwood North	2375 5590	Census	1% 3%	2% 4%	
Callingwood South Cameron Heights	4490	Census NSP	2%	3%	6%
Dechene	1720	Census	1%	1%	0%
Donsdale	1310	Census	1%	1%	
	14836	NSP	7%	11%	20%
Edgemont Gariepy	1890	Census	1%	1%	20%
Glastonbury	7780	NSP	4%	6%	
Granville	5820	NSP	3%	4%	
Jamieson Place	3920	Census	2%	3%	
La Perle	5212	Census	3%	370	
Lymburn	5930	Census	3%	4%	
Oleskiw	2995	Census	1%	2%	
Ormsby Place	5325	Census	3%	4%	
Riverview	52889	ASP	26%	39%	70%
The Hamptons	13588	NSP	7%	10%	1070
Wedgewood Heights	1470	Census	1%	1%	
Westridge	1325	Census	1%	1%	
Parkland County (Estimate west to Hwy 60		Cerisus	2%	2%	4%
Total	205791	152902	100%	100%	100%
Within ~ 7 km radius	136478	102302	10070	61%	10070
Riverview, Edgemont, Cameron Heights, P				0170	30%
Inverview, Lugernoni, Cameron Heights, F	1 3440				JU /0

APPENDIX E

Net Trip Generation

				PASS-BY	
Pass-by and Internal Trips	Mode Split	Internal Trips	AM	PM	Daily
Town Centre West (TC1 & TC1A)	0%	40%	20%	20%	20%
Town Centre East (TC2 & TC2A)	0%	40%	20%	25%	25%
Town Centre South (TC3)	0%	40%	20%	30%	25%
CSC 1 (NBHD 2)	0%	70%	20%	35%	25%
CSC 2 (NBHD 2)	0%	70%	20%	40%	30%
CSC 3 (NBHD 4)	0%	70%	20%	40%	30%
Transit Centre Mixed Use (NBHD 3)	50%	100%	10%	10%	10%
CNC 1 (NBHD 2)	0%	100%	50%	25%	25%
CNC 2 (NBHD 3)	0%	100%	50%	50%	50%
CNC 3 (NBHD 2)	0%	100%	50%	50%	50%
CNC 4 (NBHD 4)	0%	100%	50%	50%	50%
CNC 5 (NBHD 5)	0%	100%	50%	50%	50%
Business Employment	5%	10%	0%	0%	0%
Highway Commercial	0%	10%	0%	0%	0%
District Park	0%	70%	0%	0%	0%
High School	0%	40%	0%	0%	0%
Elementary/Jr High	0%	70%	0%	0%	0%

Land Hay (ITE LUC)	Indonesia.	AM Peak	Hour	PM Pe	ak Hour	Daily	
Land Use (ITE LUC)	Intensity	In	Out	In	Out	In	Out
Town Centre West (TC1 & TC1A)	415,200	389	224	1,066	956	10,414	10,414
Mode Split		0	0	0	0	0	0
Pass-by Trips		45	45	191	191	2,083	2,083
Internal NBHD Trips		138	72	350	306	3,332	3,332
Net External Trips		207	108	525	459	4,999	4,999
Town Centre East (TC2 & TC2A)	341,300	322	215	808	853	9,976	9,976
Mode Split		0	0	0	0	0	0
Pass-by Trips		43	43	202	202	2,494	2,494
Internal NBHD Trips		112	69	242	260	2,993	2,993
Net External Trips		167	103	364	391	4,489	4,489
Town Centre South (TC3)	315,900	312	209	772	814	9,576	9,576
Mode Split		0	0	0	0	0	0
Pass-by Trips		42	42	232	232	2,394	2,394
Internal NBHD Trips		108	67	216	233	2,873	2,873
Net External Trips		162	100	324	349	4,309	4,309
CSC 1 (NBHD 2)	172,200	242	167	543	565	6,971	6,971
Mode Split		0	0	0	0	0	0
Pass-by Trips		33	33	190	190	1,743	1,743
Internal NBHD Trips		146	94	247	262	3,660	3,660
Net External Trips	0.5.000	63	40	106	112	1,568	1,568
CSC 2 (NBHD 2)	95,300	203	180	383	415	3,291	3,291
Mode Split		0	0	0	0	0	0
Pass-by Trips		36	36	153	153	987	987
Internal NBHD Trips		117	101	161	183	1,613	1,613
Net External Trips	107.600	50 229	43	69	79 442	691	691
CSC 3 (NBHD 4) Mode Split	107,600	0	203	408 0	0	3,561 0	3,561 0
Pass-by Trips		41	41	163	163	1,068	1,068
Internal NBHD Trips		132	114	171	195	1,745	1,745
Net External Trips		57	49	73	84	748	748
Transit Centre Mixed Use (NBHD 3)	52,700	112	100	263	284	2,239	2,239
Mode Split	32,700	56	50	132	142	1,120	1,120
Pass-by Trips		5	5	13	13	112	112
Internal NBHD Trips		51	45	118	129	1,008	1,008
Net External Trips		0	0	0	0	0	0
CNC 1 (NBHD 2)	23,700	73	60	99	107	1,332	1,332
Mode Split		0	0	0	0	0	0
Pass-by Trips		30	30	25	25	333	333
Internal NBHD Trips		43	30	74	82	999	999
Net External Trips		0	0	0	0	0	0
CNC 2 (NBHD 3)	26,500	82	67	122	132	1,432	1,432
Mode Split		0	0	0	0	0	0
Pass-by Trips		34	34	61	61	716	716
Internal NBHD Trips		49	34	61	71	716	716
Net External Trips	20.122	0	0	0	0	0	0
CNC 3 (NBHD 2)	26,400	82	67	121	131	1,429	1,429
Mode Split		0	0	0	0	0	0
Pass-by Trips		34	34	61	61	715	715
Internal NBHD Trips		49	34	61	71	715	715
Net External Trips	26.000	0	0	0	126	1 446	1 446
CNC 4 (NBHD 4)	26,900	83	68 0	125	136 0	1,446	1,446 0
Mode Split		34	34	0 63	63	723	723
Pass-by Trips Internal NBHD Trips		49	34	63	74	723	723
Net External Trips		0	0	0	0		0
Net External Trips		U	U	U	U	0	U

						1	
CNC 5 (NBHD 5)	26,900	83	68	125	136	1,446	1,446
Mode Split		0	0	0	0	0	0
Pass-by Trips		34	34	63	63	723	723
Internal NBHD Trips		49	34	63	74	723	723
Net External Trips		0	0	0	0	0	0
Business Employment	3,200	1,352	184	250	1,222	5,312	5,312
Mode Split		68	9	13	61	266	266
Pass-by Trips		0	0	0	0	0	0
Internal NBHD Trips		128	17	24	116	505	505
Net External Trips		1,156	157	214	1,045	4,542	4,542
Highway Commercial	675,000	451	235	387	457	5,487	5,487
Mode Split		0	0	0	0	0	0
Pass-by Trips		0	0	0	0	0	0
Internal NBHD Trips		45	24	39	46	549	549
Net External Trips		406	212	348	411	4,938	4,938
District Park	163,000	150	98	284	198	2,382	2,382
Mode Split		0	0	0	0	0	0
Pass-by Trips		0	0	0	0	0	0
Internal NBHD Trips		105	69	199	139	1,667	1,667
Net External Trips		45	29	85	59	715	715
High School	2,350	0	0	0	0	2,009	2,009
Mode Split		0	0	0	0	0	0
Pass-by Trips		0	0	0	0	0	0
Internal NBHD Trips		0	0	0	0	804	804
Net External Trips		0	0	0	0	1,205	1,205
Elementary/Jr High	3,750	0	0	0	0	2,738	2,738
Mode Split		0	0	0	0	0	0
Pass-by Trips		0	0	0	0	0	0
Internal NBHD Trips		0	0	0	0	1,917	1,917
Net External Trips		0	0	0	0	821	821
Total Gross Trips		4,165	2,145	5,756	6,848	71,041	71,041
Total Mode Split		124	59	144	203	1,385	1,385
Total Pass-by Trips		410	410	1,416	1,416	14,091	14,091
Total Internal NBHD Trips		1,320	835	2,088	2,240	26,539	26,539
Total External NBHD Trips		2,312	841	2,108	2,989	29,026	29,026

Discrepancies between the totals noted above and totals summarized in Table 4-6 reflect rounding differences.

Residential Trip Generation

Land Use (ITE LUC)	Intensity	AM Peal	(Hour	PM Pe	ak Hour	Daily	
Land Use (ITE LUC)	Intensity	In	Out	In	Out	In	Out
Residential - Existing & Single Unit	13,946	1,828	7,794	7,382	3,636	55,226	55,226
Mode Split	5%	91	390	369	182	2,761	2,761
Internal NBHD Trips		668	1,044	1,777	1,603	19,359	19,359
Net External Trips		1,069	6,360	5,236	1,851	33,106	33,106
Residential - Townhouse	1,613	156	586	608	327	5,315	5,315
Mode Split	5%	8	29	30	16	266	266
Internal NBHD Trips		57	78	146	144	1,863	1,863
Net External Trips		91	478	431	166	3,186	3,186
Residential - Low-Rise Apartment	3,622	209	1,022	913	536	10,522	10,522
Mode Split	5%	10	51	46	27	526	526
Internal NBHD Trips		76	137	220	236	3,688	3,688
Net External Trips		122	834	648	273	6,308	6,308
Residential - Mixed Use	1,375	79	388	347	204	3,994	3,994
Mode Split	5%	4	19	17	10	200	200
Internal NBHD Trips		29	52	84	90	1,400	1,400
Net External Trips		46	317	246	104	2,394	2,394
Residential - HDR	225	13	63	57	33	654	654
Mode Split	5%	1	3	3	2	33	33
Internal NBHD Trips		5	8	14	15	229	229
Net External Trips		8	51	40	17	392	392
Total Gross Trips		2,285	9,853	9,307	4,736	75,711	75,711
Total Mode Split		114	493	465	237	3,786	3,786
Total Internal NBHD Trips		835	1,320	2,240	2,088	26,539	26,539
Total External NBHD Trips		1,336	8,041	6,601	2,411	45,386	45,386
% Internal Trips By Direction		37%	13%	24%	44%	35%	35%
% Total Internal Trips		189	%	3	1%	35	%
Total Gross Trips		6,450	11,998	15,063	11,584	146,752	146,752
Total Mode Split		238	552	609	440	5,171	5,171
Total Pass-hv		410	410	1 4 1 6	1 416	14 091	14 091

Total External NBHD Trips	12,53	30	14	,110	148,	824
	3,648	8,882	8,710	5,400	74,412	74,412
Total Internal NBHD Trips	2,155	2,155	4,328	4,328	53,079	53,079
Total Pass-by	410	410	1,416	1,416	14,091	14,091
Total Mode Split	238	552	609	440	5,171	5,171
Total Gross Trips	6,450	11,998	15,063	11,584	146,752	146,752

Discrepancies between the totals noted above and totals summarized in Table 4-7 reflect rounding differences.

APPENDIX F

City Of Edmonton 2013 Origin-Destination Tables

Table P9: 2044 AM Peak Period (Percentage for Origin Trips)

										ă	DESTINATION SECTOR	N SECTOR									
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19	
ORIGIN SECTOR	ECTOR	CBD	University	CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner V	West Inner N	NW Suburb	NE Suburb	SE Suburb	SW Suburb	West	Sherwood Park	St. Albert	Strathcona County	Leduc	Parkland County	Sturgeon County	Sum
Sector 1	CBD	14.4%	4.6%	15.7%	7.3%	%8'9	7.0%	2.9%	4.7%	8.5%	3.0%	%8'6	3.0%	2.7%	2.6%	1.6%	0.5%	1.0%	%9:0	0.5%	100.0%
Sector 2	University	%6:9	14.4%	7.6%	4.8%	3.4%	7.3%	12.2%	4.5%	8.5%	1.8%	13.6%	6.1%	3.4%	1.7%	1.3%	0.3%	1.2%	%2.0	0.4%	100.0%
Sector 3	CBD Fringe	%8'6	3.6%	17.3%	10.3%	7.0%	5.1%	3.8%	4.7%	14.5%	3.2%	9.2%	2.4%	2.2%	1.8%	1.8%	%9.0	1.1%	%8'0	0.7%	100.0%
Sector 4	NW Inner	7.3%	4.6%	8:6%	16.2%	8.0%	4.1%	2.3%	4.3%	18.6%	5.3%	8.8%	1.5%	1.9%	1.6%	2.5%	%2'0	%2'0	%6:0	1.0%	100.0%
Sector 5	NE Inner	2.6%	2.3%	6.1%	8.8%	19.1%	5.2%	2.1%	2.1%	12.4%	13.4%	10.3%	1.4%	1.2%	2.7%	1.8%	1.1%	0.8%	0.7%	2.9%	100.0%
Sector 6	SE Inner	%9:6	6.1%	2.5%	3.7%	5.5%	19.3%	4.2%	2.0%	2.5%	2.8%	24.5%	2.3%	1.2%	2.9%	%8'0	%9.0	2.6%	0.4%	0.4%	100.0%
Sector 7	SW Inner	7.7%	10.9%	2.0%	2.8%	2.0%	3.9%	20.1%	2.4%	%6.9	1.3%	18.0%	10.7%	1.8%	1.8%	%6:0	0.5%	2.2%	0.8%	0.3%	100.0%
Sector 8	West Inner	7.8%	5.1%	6.8%	2.5%	2.5%	2.4%	3.1%	20.0%	17.2%	1.8%	8.1%	3.3%	9.8%	1.0%	2.1%	0.4%	1.2%	1.2%	0.6%	100.0%
Sector 9	NW Suburb	4.4%	3.5%	5.7%	%9.6	6.2%	3.0%	1.7%	4.3%	31.2%	6.3%	7.2%	1.7%	3.4%	1.6%	2.0%	%6:0	0.8%	1.9%	1.8%	100.0%
Sector 10	NE Suburb	3.3%	1.5%	3.6%	6.1%	13.3%	3.8%	1.4%	1.6%	12.2%	27.2%	9.7%	1.3%	1.1%	3.1%	2.2%	1.9%	1.0%	0.7%	4.8%	100.0%
Sector 11	SE Suburb	3.9%	3.3%	2.1%	1.5%	1.8%	6.5%	3.9%	1.4%	3.5%	1.9%	52.5%	5.5%	1.3%	2.6%	0.5%	0.7%	6.2%	0.5%	0.4%	100.0%
Sector 12	SW Suburb	5.4%	6.4%	3.5%	2.1%	1.3%	2.3%	9.5%	2.4%	7.6%	1.4%	16.2%	30.7%	2.1%	1.5%	1.1%	0.5%	4.6%	1.0%	0.5%	100.0%
Sector 13	West Suburb	4.8%	3.8%	4.0%	3.3%	1.8%	2.0%	3.1%	11.0%	15.7%	1.9%	%9.6	2.0%	25.7%	%6:0	2.2%	0.5%	1.9%	2.3%	0.7%	100.0%
Sector 14	Sherwood Park	5.4%	1.9%	3.5%	2.8%	3.3%	3.9%	1.9%	1.2%	2.7%	5.8%	13.4%	1.9%	0.8%	36.9%	1.0%	7.4%	1.4%	0.5%	1.0%	100.0%
Sector 15	St. Albert	6.2%	1.8%	3.8%	4.1%	2.4%	1.5%	1.2%	2.6%	22.6%	3.7%	4.7%	1.7%	2.5%	1.0%	34.7%	0.8%	%6:0	1.4%	2.4%	100.0%
Sector 16	Strathcona County	2.5%	1.1%	1.6%	2.0%	2.1%	1.9%	1.0%	%9:0	2.9%	9.4%	7.4%	1.1%	0.4%	13.4%	0.8%	49.4%	0.7%	0.2%	1.7%	100.0%
Sector 17	Leduc County	2.0%	1.4%	1.6%	0.8%	0.7%	1.5%	2.2%	1.0%	2.6%	0.8%	16.3%	7.1%	1.2%	1.2%	0.4%	0.3%	58.0%	0.8%	0.2%	100.0%
Sector 18	Parkland County	3.2%	2.1%	3.1%	3.2%	1.6%	1.2%	1.8%	1.9%	15.8%	1.8%	5.4%	2.9%	3.0%	%9:0	2.6%	0.3%	1.5%	47.3%	0.6%	100.0%
Sector 19	Sturgeon County	2.4%	1.2%	2.8%	4.1%	3.2%	1.1%	%2.0	1.4%	13.4%	11.2%	2.8%	%8'0	1.3%	1.7%	8.9%	2.8%	0.3%	1.2%	38.6%	100.0%

Table P11: 2044 PM Peak Period (Percentage for Origin Trips)

										Ĭ	ESTINATIO	DESTINATION SECTOR									
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19	
ORIGIN SECTOR	ECTOR	CBD	University	University CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner	West Inner	NW Suburb	NE Suburb	SE Suburb	SW Suburb	West	Sherwood Park	St. Albert	Strathcona County	Leduc	Parkland County	Sturgeon County	Sum
Sector 1	CBD	8.5%	2.3%	10.3%	7.4%	6.5%	7.2%	6.5%	2.7%	2.0%	4.3%	8.1%	8.1%	6.4%	2.0%	4.5%	1.2%	1.0%	1.4%	0.8%	100.0%
Sector 2	University	2.9%	7.5%	4.2%	5.4%	3.4%	6.7%	14.5%	4.9%	5.4%	2.7%	%8'6	15.9%	%6.9	2.6%	2.0%	%2.0	1.6%	2.1%	0.7%	100.0%
Sector 3	CBD Fringe	2.5%	2.1%	19.3%	11.1%	8.6%	2.0%	4.0%	5.3%	%9:9	2.5%	5.1%	4.7%	4.9%	3.2%	3.2%	%6:0	1.1%	2.2%	1.4%	100.0%
Sector 4	NW Inner	2.9%	1.2%	7.3%	22.1%	11.2%	3.3%	2.0%	4.2%	14.1%	8.3%	3.8%	2.8%	4.0%	2.9%	3.8%	1.0%	%9:0	2.4%	2.1%	100.0%
Sector 5	NE Inner	2.1%	1.1%	4.2%	9.3%	27.5%	4.0%	1.5%	1.6%	8.1%	21.3%	3.9%	1.7%	2.1%	3.6%	2.4%	1.4%	%9:0	1.2%	2.3%	100.0%
Sector 6	SE Inner	2.9%	2.6%	4.3%	4.6%	7.3%	23.0%	2.0%	2.0%	3.7%	2.9%	19.7%	4.4%	2.7%	5.8%	1.4%	1.3%	1.7%	1.1%	0.7%	100.0%
Sector 7	SW Inner	2.0%	3.7%	3.0%	2.2%	2.2%	4.5%	27.4%	2.4%	2.2%	1.8%	16.1%	19.2%	4.1%	2.7%	1.1%	%2.0	2.6%	1.5%	0.4%	100.0%
Sector 8	West Inner	2.3%	1.2%	4.6%	5.5%	2.7%	1.7%	2.9%	24.1%	8.8%	2.5%	3.7%	5.3%	23.5%	1.4%	3.7%	0.4%	1.2%	3.4%	1.0%	100.0%
Sector 9	NW Suburb	1.1%	0.8%	3.0%	8.9%	6.0%	2.0%	1.7%	5.2%	23.9%	7.2%	4.0%	4.6%	9.0%	2.4%	%0'6	0.8%	%6:0	2.7%	3.7%	100.0%
Sector 10	NE Suburb	0.8%	0.5%	1.7%	4.7%	15.5%	1.8%	0.8%	%6:0	6.8%	42.1%	3.1%	1.4%	1.7%	4.4%	2.8%	4.1%	0.5%	1.2%	5.1%	100.0%
Sector 11	SE Suburb	0.8%	1.1%	1.4%	2.0%	2.6%	5.8%	9:9%	1.5%	2.1%	3.2%	47.5%	9.6%	3.2%	4.3%	1.0%	1.3%	5.4%	1.2%	0.5%	100.0%
Sector 12	SW Suburb	0.8%	1.4%	1.2%	1.0%	0.8%	1.4%	10.5%	1.8%	1.7%	%6:0	13.5%	51.5%	4.4%	1.4%	%6:0	0.4%	4.6%	1.4%	0.3%	100.0%
Sector 13	West Suburb	1.1%	0.7%	1.9%	2.4%	1.5%	0.9%	2.3%	11.4%	7.4%	1.7%	3.4%	4.9%	49.2%	%6:0	3.1%	0.3%	1.3%	4.6%	0.9%	100.0%
Sector 14	Sherwood Park	0.6%	0.3%	1.1%	1.5%	2.9%	2.8%	1.4%	%9.0	1.7%	4.6%	%9.9	2.0%	1.0%	%9.09	0.8%	9.5%	1.0%	0.4%	0.6%	100.0%
Sector 15	St. Albert	0.4%	0.3%	1.3%	3.1%	2.1%	0.7%	0.7%	1.9%	9.1%	3.4%	1.3%	1.8%	4.1%	%6:0	59.2%	0.5%	0.4%	2.4%	6.3%	100.0%
Sector 16	Strathcona County	0.4%	0.2%	0.5%	0.8%	1.5%	0.7%	0.5%	0.3%	1.3%	4.2%	2.4%	0.9%	0.7%	13.1%	%6:0	69.1%	0.5%	0.3%	1.8%	100.0%
Sector 17	Leduc County	%9:0	0.4%	0.7%	0.5%	0.6%	0.9%	1.9%	0.8%	%6:0	%6:0	9.8%	7.3%	2.0%	1.2%	%9.0	0.4%	68.8%	1.3%	0.5%	100.0%
Sector 18	Parkland County	0.5%	0.3%	0.7%	1.0%	0.8%	0.4%	0.8%	1.2%	2.9%	0.9%	1.4%	1.8%	4.1%	0.4%	1.5%	0.1%	%6:0	79.6%	0.7%	100.0%
Sector 19	Sturgeon County	0.5%	0.5%	1.0%	1.9%	5.2%	%9:0	0.5%	%8.0	4.5%	12.5%	1.4%	1.2%	1.9%	2.4%	9.7%	3.1%	0.3%	1.3%	51.3%	100.0%

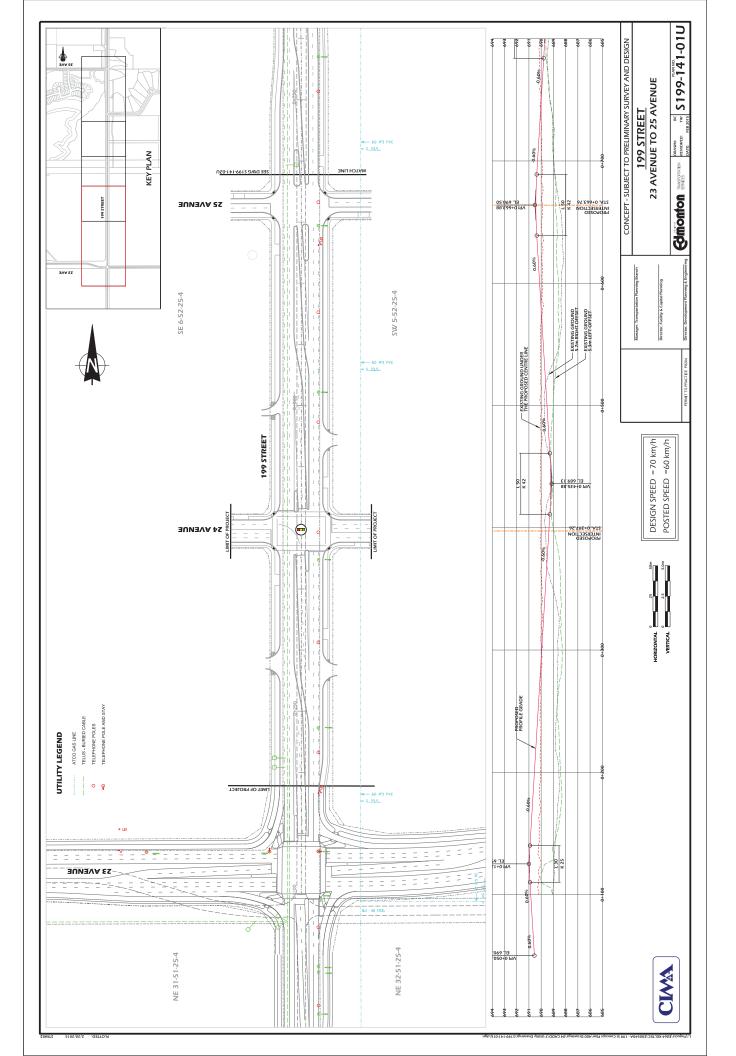
Table P10: 2044 AM Peak Period (Percentage for Destination Trips)

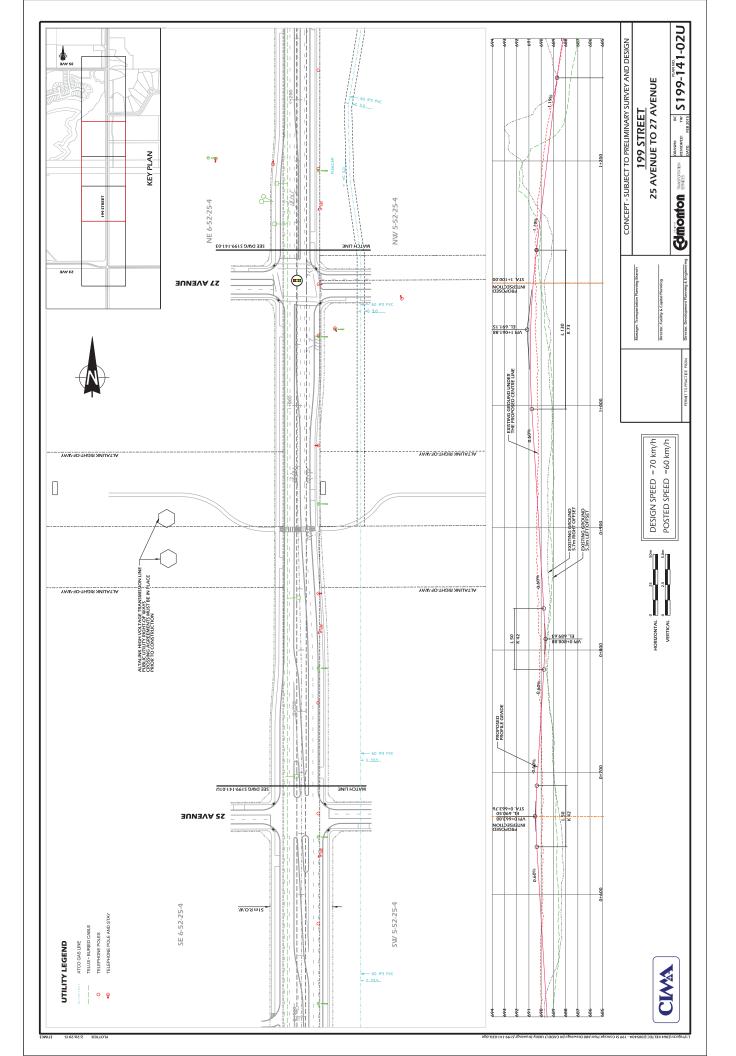
										DESTII	DESTINATION SECTOR	CTOR								
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19
ORIGIN SECTOR	SECTOR	CBD	University	University CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner	West Inner	NW Suburb	NE Suburb	SE Suburb	SW Suburb	West Suburb	Sherwood Park	St. Albert	Strathcona County	Leduc	Parkland County	Sturgeon County
Sector 1	CBD	3.4%	1.6%	4.2%	1.9%	1.8%	2.2%	1.9%	1.7%	0.9%	%9:0	%8:0	%9.0	%6:0	%2'0	0.5%	0.2%	0.2%	0.2%	0.2%
Sector 2	University	1.1%	3.5%	1.4%	%6:0	%9.0	1.6%	2.7%	1.1%	%9.0	0.3%	%2.0	%8.0	%8.0	0.3%	0.3%	0.1%	0.2%	0.2%	0.1%
Sector 3	CBD Fringe	2.7%	3.1%	11.3%	%9'9	4.5%	3.9%	3.0%	4.1%	3.8%	1.7%	1.7%	1.1%	1.8%	1.1%	1.4%	0.5%	%9:0	%9.0	%8.0
Sector 4	NW Inner	6.4%	5.8%	9.8%	15.9%	7.8%	4.7%	2.7%	2.7%	7.2%	4.1%	2.5%	1.1%	2.3%	1.6%	3.0%	0.9%	%9:0	1.1%	1.8%
Sector 5	NE Inner	2.9%	3.5%	7.3%	10.3%	22.5%	7.3%	3.0%	3.4%	2.9%	12.5%	3.5%	1.2%	1.8%	3.2%	2.6%	1.8%	%8.0	1.0%	6.2%
Sector 6	SE Inner	%9.9	6.1%	4.3%	2.8%	4.2%	17.5%	3.9%	2.0%	1.7%	1.7%	2.5%	1.3%	1.2%	2.2%	%8'0	%9:0	1.6%	0.4%	%9:0
Sector 7	SW Inner	5.2%	10.6%	3.8%	2.1%	1.5%	3.5%	18.1%	2.4%	2.1%	0.8%	3.9%	%0.9	1.8%	1.4%	%8'0	0.5%	1.4%	%2'0	0.5%
Sector 8	West Inner	2.3%	2.0%	5.2%	4.2%	1.9%	2.1%	2.8%	20.6%	5.2%	1.1%	1.8%	1.9%	9.4%	%8.0	1.9%	0.4%	%8.0	1.2%	%8.0
Sector 9	NW Suburb	2.0%	5.8%	7.2%	12.0%	7.7%	4.5%	2.5%	7.3%	15.7%	6.3%	2.7%	1.6%	5.3%	2.0%	%9'2	1.6%	0.8%	3.0%	4.2%
Sector 10	NE Suburb	5.1%	3.3%	6.2%	10.4%	22.6%	%9'.2	3.0%	3.7%	8.3%	36.5%	4.8%	1.6%	2.3%	5.4%	4.6%	4.7%	1.3%	1.5%	14.9%
Sector 11	SE Suburb	%0.6	10.9%	5.4%	3.9%	4.5%	19.5%	12.0%	4.8%	3.6%	3.7%	39.0%	10.5%	4.1%	6.8%	1.7%	2.4%	13.2%	1.6%	1.7%
Sector 12	SW Suburb	11.1%	18.9%	8.2%	4.8%	2.9%	6.2%	26.0%	7.3%	%6.9	2.5%	10.8%	52.2%	6.1%	3.4%	3.0%	1.7%	8.7%	2.9%	1.9%
Sector 13	West Suburb	6.4%	7.3%	5.9%	4.9%	2.6%	3.4%	5.5%	22.0%	9.2%	2.2%	4.2%	5.5%	48.1%	1.4%	4.0%	1.0%	2.3%	4.2%	1.9%
Sector 14	Sherwood Park	7.0%	3.5%	5.1%	4.1%	4.6%	%9.9	3.3%	2.3%	3.2%	6.5%	2.6%	2.1%	1.5%	52.8%	1.8%	15.1%	1.7%	%6:0	2.6%
Sector 15	St. Albert	7.0%	2.9%	4.8%	5.1%	3.0%	2.2%	1.8%	4.4%	11.2%	3.7%	1.7%	1.6%	3.9%	1.3%	52.6%	1.4%	1.0%	2.1%	2.5%
Sector 16	Strathcona County	2.0%	1.2%	1.5%	1.7%	1.9%	2.0%	1.1%	0.7%	1.0%	6.6%	1.9%	%2'0	0.5%	12.0%	0.8%	63.1%	0.5%	0.2%	2.7%
Sector 17	Leduc County	2.3%	2.4%	2.1%	1.1%	0.9%	2.2%	3.4%	1.7%	1.3%	0.8%	6.2%	%6.9	1.9%	1.6%	%9:0	0.6%	62.5%	1.3%	0.4%
Sector 18	Parkland County	3.7%	3.6%	4.1%	4.2%	2.1%	1.8%	2.8%	3.3%	8.2%	1.9%	2.1%	2.8%	4.9%	0.8%	4.1%	0.5%	1.6%	75.8%	1.4%
Sector 19	Sturgeon County	1.6%	1.2%	2.1%	3.0%	2.4%	%6:0	%9.0	1.4%	4.0%	%9.9	%9:0	0.4%	1.2%	1.3%	8.0%	3.0%	0.2%	1.1%	51.8%

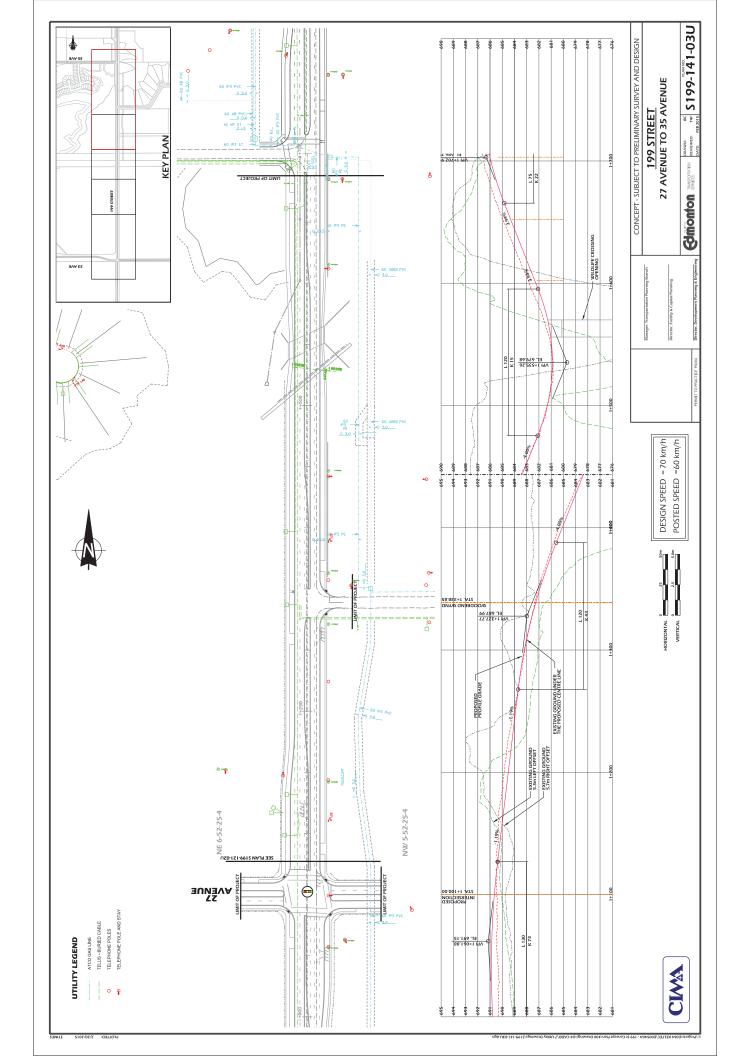
Table P12: 2044 PM Peak Period (Percentage for Destination Trips)

										DESTIN	DESTINATION SECTOR	STOR								
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19
ORIGIN SECTOR	ECTOR	CBD	University	University CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner	West Inner	NW Suburb	NE Suburb	SE Suburb	SW Suburb	West Suburb	Sherwood Park	St. Albert	Strathcona	Leduc	Parkland County	Sturgeon County
Sector 1	CBD	18.5%	6.3%	11.2%	5.4%	4.0%	%8.9	4.8%	2.6%	2.6%	2.1%	2.2%	3.1%	3.1%	2.8%	2.8%	1.1%	%9.0	0.8%	%6:0
Sector 2	University	4.4%	14.4%	3.2%	2.7%	1.5%	4.4%	7.5%	3.3%	2.0%	%6.0	1.9%	4.3%	2.3%	1.0%	0.8%	0.5%	%2.0	%6:0	%9.0
Sector 3	CBD Fringe	12.7%	6.1%	22.3%	8.6%	2.7%	5.1%	3.2%	5.4%	3.7%	2.8%	1.5%	1.9%	2.5%	1.9%	2.1%	%6:0	%8.0	1.5%	1.8%
Sector 4	NW Inner	8.2%	4.5%	10.3%	21.0%	9.1%	4.1%	2.0%	5.3%	%9.6	5.2%	1.4%	1.4%	2.6%	2.2%	3.1%	1.1%	0.5%	1.9%	3.3%
Sector 5	NE Inner	6.5%	4.3%	6.5%	%9:6	24.3%	5.4%	1.6%	2.2%	%0.9	14.5%	1.5%	%6:0	1.5%	2.9%	2.1%	1.8%	0.5%	1.1%	3.9%
Sector 6	SE Inner	6.5%	7.5%	4.8%	3.4%	4.7%	22.6%	3.8%	2.0%	2.0%	2.9%	2.6%	1.8%	1.4%	3.4%	%6:0	1.2%	1.2%	%2'0	%8'0
Sector 7	SW Inner	2.7%	13.6%	4.4%	2.1%	1.8%	2.7%	27.2%	3.1%	1.5%	1.1%	2.9%	%6.6	2.7%	2.0%	1.0%	%6:0	2.2%	1.2%	%9.0
Sector 8	West Inner	4.8%	3.1%	4.7%	3.7%	1.6%	1.5%	2.1%	22.0%	4.4%	1.1%	1.0%	1.9%	10.7%	0.7%	2.2%	0.4%	0.7%	2.0%	1.2%
Sector 9	NW Suburb	7.0%	6.5%	9.4%	18.5%	10.7%	5.4%	3.7%	14.3%	35.6%	9.8%	3.1%	5.1%	12.4%	3.8%	16.0%	2.0%	1.7%	86.6	12.7%
Sector 10	NE Suburb	3.3%	2.8%	3.4%	6.4%	18.1%	3.3%	1.1%	1.6%	6.7%	37.8%	1.6%	1.0%	1.5%	4.7%	3.3%	7.0%	%9:0	1.3%	11.5%
Sector 11	SE Suburb	7.0%	13.1%	6.5%	6.3%	%6.9	23.9%	18.0%	6.1%	4.6%	%9.9	56.2%	16.0%	6.7%	10.3%	2.8%	5.1%	14.7%	3.2%	2.3%
Sector 12	SW Suburb	3.5%	8.1%	2.8%	1.6%	1.0%	2.8%	16.3%	3.6%	1.9%	0.9%	7.7%	41.4%	4.4%	1.7%	1.2%	0.8%	6.1%	1.7%	0.7%
Sector 13	West Suburb	4.0%	3.4%	3.5%	3.0%	1.6%	1.5%	2.9%	18.6%	6.5%	1.4%	1.6%	3.2%	39.8%	0.8%	3.3%	0.5%	1.4%	4.7%	1.8%
Sector 14	Sherwood Park	1.8%	1.4%	1.8%	1.7%	2.8%	4.0%	1.6%	%6:0	1.3%	3.3%	2.8%	1.2%	0.7%	51.9%	0.8%	13.2%	1.0%	0.4%	1.1%
Sector 15	St. Albert	1.3%	1.2%	2.0%	3.1%	1.8%	0.9%	0.7%	2.6%	%9.9	2.3%	0.5%	1.0%	2.7%	0.7%	51.2%	0.6%	0.3%	2.1%	10.5%
Sector 16	Strathcona County	0.7%	0.4%	0.5%	%9:0	%6:0	%9.0	0.4%	0.3%	0.7%	1.9%	%9.0	0.3%	0.3%	7.1%	0.5%	60.3%	0.3%	0.2%	2.1%
Sector 17	Leduc County	2.0%	1.7%	1.1%	%9:0	%9.0	1.3%	2.1%	1.1%	0.7%	0.7%	4.0%	4.3%	1.5%	1.0%	%9:0	0.6%	65.9%	1.2%	0.3%
Sector 18	Parkland County	1.4%	1.1%	1.0%	1.0%	%9.0	0.5%	0.8%	1.5%	2.1%	0.6%	0.5%	0.9%	2.6%	0.3%	1.2%	0.1%	0.8%	64.7%	1.2%
Sector 19	Sturgeon County	0.8%	0.5%	0.7%	0.9%	2.3%	0.4%	0.2%	0.5%	1.6%	4.1%	0.3%	0.3%	%9.0	%6:0	4.2%	2.0%	0.1%	0.5%	42.7%

Table S5: 2044 Daily (Percentage for Origin Trips)


										DE	DESTINATION SECTOR	N SECTOR									
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19	
ORIGIN SECTOR	ECTOR	CBD	University	CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner	WestInner	NW Suburb	NE Suburb	SE Suburb (SW Suburb	West	Sherwood Park	St. Albert	Strathcona	Leduc	Parkland County	Sturgeon County	Sum
Sector 1	CBD	10.4%	2.9%	13.6%	8.7%	7.3%	7.5%	7.0%	5.2%	2.9%	3.9%	8.0%	5.1%	5.4%	3.6%	2.7%	%9.0	0.7%	%8.0	%9.0	100.0%
Sector 2	University	3.5%	%0'6	2.0%	2.0%	3.6%	%9'L	16.2%	4.7%	2.7%	2.5%	11.2%	12.0%	6.2%	2.2%	1.8%	0.5%	1.3%	1.5%	%9'0	100.0%
Sector 3	CBD Fringe	%8'9	2.3%	22.1%	12.1%	8.6%	5.2%	4.5%	5.3%	8.0%	4.6%	9.5%	3.4%	4.5%	2.1%	2.4%	0.5%	%2.0	1.1%	%8'0	100.0%
Sector 4	NW Inner	3.7%	1.8%	7.8%	23.6%	11.0%	3.3%	2.2%	4.2%	16.6%	7.2%	4.1%	1.9%	3.5%	2.1%	3.3%	%9.0	0.4%	1.3%	1.4%	100.0%
Sector 5	NE Inner	2.7%	1.3%	4.7%	%8'6	27.9%	4.3%	1.7%	1.7%	9.5%	20.5%	4.7%	1.2%	1.8%	2.8%	1.9%	%6:0	0.4%	%9.0	1.9%	100.0%
Sector 6	SE Inner	4.2%	3.4%	4.7%	4.2%	%8.9	25.0%	2.6%	2.0%	3.5%	4.5%	21.7%	3.3%	2.3%	4.6%	1.0%	%2'0	1.4%	0.5%	0.4%	100.0%
Sector 7	SW Inner	2.7%	4.6%	3.2%	2.3%	1.9%	4.5%	30.0%	2.2%	2.8%	1.2%	17.3%	18.0%	3.4%	2.0%	0.7%	0.4%	1.7%	0.8%	0.5%	100.0%
Sector 8	West Inner	3.3%	2.0%	5.1%	2.7%	2.4%	1.9%	3.2%	24.5%	11.6%	1.7%	4.4%	4.2%	22.8%	%6:0	2.9%	0.3%	0.8%	1.8%	%9.0	100.0%
Sector 9	NW Suburb	1.6%	1.2%	3.3%	10.3%	6.4%	1.9%	1.6%	5.3%	31.2%	6.7%	3.4%	2.7%	8.5%	1.7%	7.4%	0.5%	0.5%	3.3%	2.5%	100.0%
Sector 10	NE Suburb	1.4%	0.8%	2.2%	5.4%	16.6%	2.4%	0.9%	1.0%	8.3%	42.1%	4.1%	0.8%	1.3%	3.3%	22%	2.3%	0.4%	%9.0	3.9%	100.0%
Sector 11	SE Suburb	1.2%	1.4%	1.3%	1.5%	2.0%	6.1%	6.2%	1.2%	1.7%	2.0%	54.8%	8.3%	2.3%	3.3%	0.5%	%8.0	4.5%	%9.0	0.5%	100.0%
Sector 12	SW Suburb	1.8%	2.7%	1.8%	1.3%	0.8%	1.6%	11.7%	1.9%	3.0%	0.7%	15.1%	47.2%	3.7%	1.1%	0.7%	0.3%	3.6%	0.8%	0.5%	100.0%
Sector 13	West Suburb	1.8%	1.4%	2.3%	2.6%	1.3%	1.2%	2.6%	11.5%	9.8%	1.3%	4.6%	4.6%	47.4%	%9.0	2.5%	0.2%	1.0%	2.8%	%9.0	100.0%
Sector 14	Sherwood Park	1.4%	%9.0	1.4%	1.6%	2.6%	2.9%	1.4%	%9.0	2.1%	4.0%	7.2%	1.2%	%8.0	62.9%	%9'0	7.1%	0.7%	0.5%	0.5%	100.0%
Sector 15	St. Albert	1.5%	%9.0	1.7%	3.2%	1.9%	%8.0	0.7%	2.0%	11.6%	2.7%	1.5%	1.1%	3.5%	%9.0	%9'09	0.3%	0.3%	1.3%	4.2%	100.0%
Sector 16	Strathcona County	0.7%	0.3%	0.7%	%6:0	1.4%	%6.0	0.7%	0.3%	1.4%	4.9%	3.4%	0.7%	0.5%	13.4%	%9'0	67.5%	0.4%	0.1%	1.3%	100.0%
Sector 17	Leduc County	0.8%	%9.0	0.8%	0.5%	0.5%	1.0%	2.1%	0.7%	1.1%	0.6%	12.2%	6.4%	1.6%	%6:0	0.3%	0.3%	68.8%	0.8%	0.1%	100.0%
Sector 18	Parkland County	%6:0	%9.0	1.1%	1.3%	0.8%	0.5%	1.0%	1.3%	5.5%	0.8%	2.0%	1.6%	4.0%	0.3%	1.5%	0.1%	0.8%	75.6%	0.5%	100.0%
Sector 19	Sturgeon County	1.0%	%5'0	1.5%	2.6%	4.0%	%2.0	0.5%	1.0%	7.3%	10.6%	1.4%	%2.0	1.8%	1.8%	11.6%	2.8%	0.2%	1.0%	49.0%	100.0%
			1		1														l]


Table S6: 2044 Daily (Percentage for Destination Trips)


										DESTIN	DESTINATION SECTOR	CTOR								
		Sector 1	Sector 2	Sector 3	Sector 4	Sector 5	Sector 6	Sector 7	Sector 8	Sector 9	Sector 10	Sector 11	Sector 12	Sector 13	Sector 14	Sector 15	Sector 16	Sector 17	Sector 18	Sector 19
ORIGIN SECTOR	ECTOR	CBD	University	CBD Fringe	NW Inner	NE Inner	SE Inner	SW Inner	West Inner	NW Suburb	NE Suburb	SE Suburb	SW Suburb	West	Sherwood Park	St. Albert	Strathcona County	Leduc	Parkland County	Sturgeon
Sector 1	CBD	11.9%	4.3%	%8'6	4.5%	3.4%	5.1%	3.6%	3.7%	1.9%	1.5%	1.5%	1.6%	2.0%	1.5%	1.3%	0.5%	0.4%	0.4%	%9.0
Sector 2	University	2.9%	9.7%	2.6%	1.8%	1.2%	3.7%	2.9%	2.4%	1.3%	0.7%	1.5%	2.7%	1.7%	%9'0	%9'0	0.3%	0.5%	0.5%	0.4%
Sector 3	CBD Fringe	8.7%	4.7%	21.6%	8.5%	5.4%	4.8%	3.1%	5.1%	3.5%	2.4%	1.4%	1.5%	2.3%	1.2%	1.5%	0.5%	0.5%	0.7%	1.2%
Sector 4	NW Inner	7.7%	5.1%	10.4%	22.4%	%5'6	4.1%	2.0%	2.6%	8.7%	5.1%	1.4%	1.1%	2.4%	1.6%	2.8%	%8:0	0.4%	1.2%	2.7%
Sector 5	NE Inner	6.5%	4.0%	7.0%	10.5%	26.9%	%0.9	1.8%	2.5%	6.1%	16.2%	1.8%	%8'0	1.4%	2.4%	1.9%	1.4%	0.4%	0.7%	4.2%
Sector 6	SE Inner	%8'9	7.1%	4.8%	3.0%	4.5%	23.9%	4.0%	2.0%	1.6%	2.4%	2.7%	1.5%	1.2%	2.7%	%2'0	%2'0	1.0%	0.4%	%9.0
Sector 7	SW Inner	2.6%	12.8%	4.2%	2.1%	1.7%	2.6%	27.9%	2.9%	1.6%	%8'0	2.9%	10.5%	2.3%	1.5%	%9.0	%9:0	1.6%	%8'0	0.4%
Sector 8	West Inner	5.2%	4.1%	2.0%	4.0%	1.5%	1.7%	2.2%	24.0%	2.0%	%6:0	1.1%	1.9%	11.7%	0.5%	1.8%	0.3%	%9.0	1.2%	0.9%
Sector 9	NW Suburb	5.8%	2.7%	7.4%	16.7%	9.3%	4.0%	2.5%	11.8%	31.3%	8.1%	2.0%	2.7%	10.1%	2.2%	10.7%	1.3%	%8:0	5.3%	8.4%
Sector 10	NE Suburb	4.3%	3.0%	4.1%	7.2%	20.3%	4.2%	1.2%	1.9%	7.0%	42.2%	2.0%	%2'0	1.3%	3.6%	2.7%	4.6%	0.5%	%8'0	11.0%
Sector 11	SE Suburb	7.4%	11.4%	5.1%	4.0%	4.8%	21.8%	16.5%	4.5%	2.9%	4.1%	53.9%	14.0%	4.6%	7.3%	1.3%	3.0%	12.1%	1.5%	1.4%
Sector 12	SW Suburb	7.0%	13.3%	4.2%	2.2%	1.2%	3.7%	19.5%	4.4%	3.2%	%6:0	9.3%	49.7%	4.6%	1.5%	1.1%	%2'0	6.1%	1.4%	0.7%
Sector 13	West Suburb	5.2%	5.4%	42%	3.4%	1.5%	2.0%	3.4%	21.1%	8.0%	1.2%	2.2%	3.7%	45.5%	0.7%	3.0%	0.4%	1.3%	3.6%	1.6%
Sector 14	Sherwood Park	3.9%	2.3%	2.5%	2.0%	2.9%	4.8%	1.8%	1.0%	1.7%	3.7%	3.3%	1.0%	0.7%	63.0%	%9'0	12.9%	%6:0	0.3%	1.2%
Sector 15	St. Albert	3.7%	1.9%	2.8%	3.7%	2.0%	1.1%	%8.0	3.2%	8.2%	2.3%	%9'0	%8.0	2.9%	0.5%	62.1%	%9.0	0.3%	1.5%	%6.6
Sector 16	Strathcona County	1.2%	%2'0	%2'0	%9'0	%6'0	%8'0	0.5%	0.3%	%9.0	2.5%	%8'0	0.3%	0.2%	7.5%	0.4%	%2'89	0.3%	0.1%	1.9%
Sector 17	Leduc County	1.9%	1.8%	1.2%	0.5%	0.4%	1.4%	2.2%	1.0%	0.7%	0.4%	4.6%	4.1%	1.2%	%8.0	0.3%	0.4%	71.3%	%6:0	0.2%
Sector 18	Parkland County	2.2%	2.0%	1.6%	1.4%	%2.0	%2.0	1.0%	1.9%	3.6%	%9.0	0.8%	1.0%	3.1%	0.3%	1.4%	0.1%	%8:0	78.3%	1.1%
07		4 40/	702.0	4 007	4 00/	4 007	/07/0	/00 0	704.0	/00 0	/0000	/00 0	/00 0	/02.0	/02. 0	700 2	0.40/	0.40/	70 20	E4 40/

APPENDIX H

Utility Plans

APPENDIX I

Environmental Noise Impact Assessment

□□i Acoustical Consultants Inc. 5031 – 210 Street Edmonton, Alberta, Canada T6M 0A8 Phone: (780) 414-6373 www.aciacoustical.com

Environmental Noise Impact Assessment For The

Riverview Developments In Southwest Edmonton

Prepared for:

Riverview Ownership Group c/o Qualico Communities

INSERT STAMP HERE

Prepared by:
P. Froment, B.Sc., B.Ed., C.E.T.

Consultants Inc.
Edmonton, Alberta

Reviewed by:
S. Bilawchuk, M.Sc., P.Eng.

Consultants Inc.
Edmonton, Alberta

APEGGA Permit to Practice #P7735

□Ci Project #: 14-049 July 24, 2014

Executive Summary

aci Acoustical Consultants Inc., of Edmonton AB, was retained by the Riverview Ownership Group to conduct an environmental noise impact assessment (NIA) for the Riverview Residential Development Neighbourhoods 1, 2 & 3 (the Developments) in southwest Edmonton. The purpose of the work was to generate a computer noise model of the Developments with the use of elevation contours, road alignments, and future traffic data to determine the noise levels for residential receptors most impacted by Anthony Henday Drive (AHD), 23 Avenue NW, 199 Street NW, Riverview Way, Quadrant Avenue & 215 Street NW. This was then used to determine the noise attenuation measures required to meet the criteria of the City of Edmonton Urban Traffic Noise Policy (UTNP), C506A.

The results of the Future Case modeling for Neighbourhood 1 indicated noise levels ranging from 61.7 - 70.8 dBA $L_{eq}24^{1}$. Neighbourhood 2 indicated noise levels ranging from 57.6 – 67.8 dBA $L_{eq}24$ while Neighbourhood 3 indicated noise levels ranging from 54.6 – 69.8 dBA $L_{eq}24$. As a result, noise mitigation measures were investigated for residential receptor locations above 65 dBA $L_{eq}24$ to lower the noise levels to below the requirements the UTNP C506A criteria.

The results of the Future Case noise modeling *with* mitigation for all 3 neighbourhoods (for residential backyard spaces that initially exceeded 65 dBA) indicated noise levels below the UTNP C506A criteria of 65 dBA L_{eq}24. A variety of barrier heights were implemented within the model to achieve the projected noise levels.

 $^{^{1}}$ The term L_{eq} represents the energy equivalent sound level. This is a measure of the equivalent sound level for a specified period of time accounting for fluctuations.

Table of Contents

1.0	Introduct	tion	1
2.0	Location	Description	1
3.0	Modeling	g Methods	2
3.1.	Comp	uter Noise Modeling	2
3.2.		ling Confidence	
4.0		ble Sound Levels	
5.0		and Discussion	
5.1.		e Case	
5.	1.1. N	Neighbourhood 1 Residential Development	6
	5.1.1.1.	215 Street NW, north of 23 Avenue NW (N1-001 to N1-005)	7
	5.1.1.2.	23 Avenue NW, between 215 Street NW and 199 Street NW (N1-006 to N1-023)	7
	5.1.1.3.	199 Street NW, north of 23 Avenue NW (N1-024 to N1-054)	7
	5.1.1.4.	23 Avenue NW, between 199 Street NW and AHD (N1-055 to N1-063)	7
5.	1.2. N	Neighbourhood 2 Residential Development	8
	5.1.2.1.	23 Avenue NW, between 215 Street NW and 199 Street NW (N2-001 to N2-010) 1	1
	5.1.2.2.	199 Street NW, south of 23 Avenue NW (N2-011 to N2-055)	1
	5.1.2.3.	215 Street NW, north of Quadrant Avenue (N2-056 to N2-083)	1
	5.1.2.4.	Riverview Way, between 215 Street NW and 199 Street NW (N2-084 to N2-116) 1	(
5.	1.3. N	Neighbourhood 3 Residential Development	l 1
	5.1.3.1.	23 Avenue NW, between 199 Street NW and AHD (N3-001 to N3-035)	13
	5.1.3.2.	Anthony Henday Drive, (N3-036 to N3-054)	13
	5.1.3.3.	Riverview Way, between 23 Avenue NW and 199 Street NW (N3-055 to N3-117) 1	13
	5.1.3.4.	199 Street NW, north of 23 Avenue NW (N3-118 to N3-130)	13
5.2.	Future	e Case With Mitigation	14
5.	2.1. N	Neighbourhood 1 Residential Development	4
	5.2.1.1.	215 Street NW, north of 23 Avenue NW (N1-001 to N1-005)	15
	5.2.1.2.	23 Avenue NW, between 215 Street NW and 199 Street NW (N1-006 to N1-023) 1	15
	5.2.1.3.	199 Street NW, north of 23 Avenue NW (N1-024 to N1-054)	15
	5.2.1.4.	23 Avenue NW, between 199 Street NW and AHD (N1-055 to N1-063)	15
5.	2.2. N	Neighbourhood 2 Residential Development	16
	5.2.2.1.	23 Avenue NW, between 215 Street NW and 199 Street NW (N2-001 to N2-010) 1	17

Riverview Owners	ship Group – Riverview Residential Developments - NIA aci Project #1	4-049
5.2.2.2. 1	199 Street NW, south of 23 Avenue NW (N2-011 to N2-055)	18
5.2.2.3. 2	215 Street NW, north of Quadrant Avenue (N2-056 to N2-083)	18
5.2.2.4. F	Riverview Way, between 215 Street NW and 199 Street NW (N2-084 to N2-116)) 18
5.2.3. Nei	ighbourhood 3 Residential Development	19
5.2.3.1. 2	23 Avenue NW, between 199 Street NW and AHD (N3-001 to N3-035)	21
5.2.3.2. A	Anthony Henday Drive, (N3-036 to N3-054)	21
5.2.3.3. F	Riverview Way, between 23 Avenue NW and 199 Street NW (N3-055 to N3-117	') 21
5.2.3.4. 1	99 Street NW, north of 23 Avenue NW (N2-118 to N2-130)	21
5.3. Noise Ba	arrier Description	22
5.3.1. Nei	ighbourhood 1 Residential Development	22
5.3.1.1. 2	215 Street NW, north of 23 Avenue NW (N1-001 to N1-006)	22
5.3.1.2. 2	23 Avenue NW, between 215 Street NW and 199 Street NW (N1-006 to N1-023)) 22
5.3.1.3. 1	99 Street NW, north of 23 Avenue NW (N1-024 to N1-054)	22
5.3.1.4. 2	23 Avenue NW, between 199 Street NW and AHD (N1-055 to N1-063)	23
5.3.2. Nei	ighbourhood 2 Residential Development	23
5.3.2.1. 2	23 Avenue NW, between 215 Street NW and 199 Street NW (N2-001 to N2-010)) 23
5.3.2.2. 1	99 Street NW, south of 23 Avenue NW (N2-011 to N2-055)	23
5.3.2.3. 2	215 Street NW, north of Quadrant Avenue (N2-056 to N2-083)	23
5.3.2.4. F	Riverview Way, between 215 Street NW and 199 Street NW (N2-084 to N2-116)) 23
5.3.3. Nei	ighbourhood 3 Residential Development	24
5.3.3.1. 2	23 Avenue NW, between 199 Street NW and AHD (N3-001 to N3-035)	24
5.3.3.2. A	Anthony Henday Drive, (N3-036 to N3-054)	24
5.3.3.3. F	Riverview Way, between 23 Avenue NW and 199 Street NW (N3-055 to N3-117	') 24
5.3.3.4. 1	99 Street NW, north of 23 Avenue NW (N3-118 to N3-130)	24
5.4. Barrier (Construction	25
6.0 Conclusion	1	26
7.0 References	S	27
Appendix I NOI	SE MODELING PARAMETERS	50
Appendix II THI	E ASSESSMENT OF ENVIRONMENTAL NOISE (GENERAL)	52
Annendiy III SO	NIND LEVELS OF FAMILIAR NOISE SOURCES	6/1

List of Tables

Table 1a. Future Case Noise Modeling Results (Neighbourhood 1)	6
Table 1b. Future Case Noise Modeling Results (Neighbourhood 2)	8
Table 1c. Future Case Noise Modeling Results (Neighbourhood 2 cont.)	
Table 1d. Future Case Noise Modeling Results (Neighbourhood 3)	11
Table 1e. Future Case Noise Modeling Results (Neighbourhood 3 cont.)	12
Table 2a. Future Case With Mitigation Noise Modeling Results (Neighbourhood 1)	14
Table 2b. Future Case With Mitigation Noise Modeling Results (Neighbourhood 2)	
Table 2c. Future Case With Mitigation Noise Modeling Results (Neighbourhood 2 cont.)	17
Table 2d. Future Case With Mitigation Noise Modeling Results (Neighbourhood 3)	19
Table 2e. Future Case With Mitigation Noise Modeling Results (Neighbourhood 3 cont.)	20
Figure 1. Study Area	20
Figure 2a. Future Case L _{eq} 24 Noise Levels For Entire Study Area	20 29
Figure 2b. Future Case Leq24 Noise Levels For Neighbourhood 1 (West Side)	
Figure 2c. Future Case Leq24 Noise Levels For Neighbourhood 1 (East Side)	
Figure 2d. Future Case Leq24 Noise Levels For Neighbourhood 2 (North Side)	
Figure 2e. Future Case L _{eq} 24 Noise Levels For Neighbourhood 2 (South Side)	
Figure 2f. Future Case L _{eq} 24 Noise Levels For Neighbourhood 3 (West Side)	
Figure 2g. Future Case L _{eq} 24 Noise Levels For Neighbourhood 3 (East Side)	
Figure 3a. Future Case <i>With</i> Mitigation L _{eq} 24 Noise Levels For Entire Study Area	
Figure 3b. Future Case <i>With</i> Mitigation L _{eq} 24 Noise Levels For Neighbourhood 1 (West Side)	
Figure 3c. Future Case <i>With</i> Mitigation L _{eq} 24 Noise Levels For Neighbourhood 1 (East Side)	
Figure 3d. Future Case With Mitigation L _{eq} 24 Noise Levels For Neighbourhood 2 (North Side)	
Figure 3e. Future Case With Mitigation Leq24 Noise Levels For Neighbourhood 2 (South Side)	
Figure 3f. Future Case With Mitigation Leq24 Noise Levels For Neighbourhood 3 (West Side)	41
Figure 3g. Future Case With Mitigation Leq24 Noise Levels For Neighbourhood 3 (East Side)	42
Figure 4a. Barrier Description For Neighbourhood 1 (West Side)	43
Figure 4b. Barrier Description For Neighbourhood 1 (East Side)	44
Figure 4c. Barrier Description For Neighbourhood 2 (North Side)	45
Figure 4d. Barrier Description For Neighbourhood 2 (South Side)	46
Figure 4e. Barrier Description For Neighbourhood 3 (West Side)	47
Figure 4f. Barrier Description For Neighbourhood 3 (East Side)	48
Figure 5. Minimum Recommended Wooden Fence Construction Sectional View	49
Figure 6. Minimum Recommended Walkway/Roadway Penetration Barrier Construction	49

1.0 Introduction

aci Acoustical Consultants Inc., of Edmonton AB, was retained by the Riverview Ownership Group to conduct an environmental noise impact assessment (NIA) for the Riverview Residential Development Neighbourhoods 1, 2 & 3 (the Developments) in southwest Edmonton. The purpose of the work was to generate a computer noise model of the Developments with the use of elevation contours, road alignments, and future traffic data to determine the noise levels for residential receptors most impacted by Anthony Henday Drive (AHD), 23 Avenue NW, 199 Street NW, Riverview Way, Quadrant Avenue & 215 Street NW. This was then used to determine the noise attenuation measures required to meet the criteria of the City of Edmonton Urban Traffic Noise Policy (UTNP), C506A.

2.0 <u>Location Description</u>

The proposed Developments are located in the Riverview area in southwest Edmonton. The residential developments included in this study are Neighbourhoods 1, 2 & 3 as shown in <u>Figure 1</u>. The land uses within the Developments will vary from single and multi-family dwellings to community commercial, schools/parks, Storm Water Management Facilities (SWMF), etc.

Neighbourhood 1 (NBHD 1) is bounded on the west by 215 Street NW, on the north by Wedgewood Creek, on the northeast & east by AHD and on the south by 23 Avenue NW. The most impacted residents within this neighborhood are those directly backing onto 23 Avenue NW, 199 Street NW and 215 Street NW. Neighbourhood 2 (NBHD 2) is bounded on the west by 215 Street NW, on the north by 23 Avenue NW, on the east by 199 Street NW and on the south by 199 Street NW/Quadrant Avenue. The most impacted residents within this neighbourhood are those adjacent to the major arterial roadways. Neighbourhood 3 (NBHD 3) is bounded on the west by 199 Street NW, on the north by 23 Avenue NW and AHD, on the east by AHD and the North Saskatchewan River Valley (NSRV) and on the south by future residential developments and the NSRV. The most impacted residents within this neighborhood are those adjacent to the major arterial roadways and backing onto AHD.

Topographically the land in the Riverview area is relatively flat with a gentle slope from the southwest to the north towards the Wedgewood Creek Ravine, to the northeast towards AHD, to the east and south to the NSRV. Presently, the land is not covered with any type of significant vegetation and, once the development is in place, much of the land will be comprised of roads, structures, etc.

3.0 Modeling Methods

3.1. Computer Noise Modeling

The computer noise modeling was conducted using the CADNA/A (version 4.4.145) software package. CADNA/A allows for the modeling of various noise sources such as road, rail, and various stationary sources. In addition, topographical features such as land contours, vegetation, and bodies of water can be included. Finally, meteorological conditions such as temperature, relative humidity, wind-speed and wind-direction can be included in the calculations.

The calculation method used for noise propagation follows the ISO standard 9613-2. All receiver locations were assumed as being downwind from the source(s). In particular, as stated in Section 5 of the ISO document:

"Downwind propagation conditions for the method specified in this part of ISO 9613 are as specified in 5.4.3.3 of ISO 1996-2:1987, namely

- wind direction within an angle of $\pm 45^{0}$ of the direction connecting the centre of the dominant sound source and the centre of the specified receiver region, with the wind blowing from source to receiver, and
- wind speed between approximately 1 m/s and 5 m/s, measured at a height of 3 m to 11 m above the ground.

The equations for calculating the average downwind sound pressure level LAT(DW) in this part of ISO 9613, including the equations for attenuation given in clause 7, are the average for meteorological conditions within these limits. The term average here means the average over a short time interval, as defined in 3.1.

These equations also hold, equivalently, for average propagation under a well-developed moderate ground-based temperature inversion, such as commonly occurs on clear, calm nights".

Due to the relatively short distances from the roads to the nearest residential structures and the minimal amount of vegetation, vegetative sound absorption was not included within the Developments. Field grasses were added outside of the Developments where appropriate to match existing conditions. Therefore, all sound level propagation calculations are considered conservatively representative of summertime conditions for all surrounding residents.

Buildings were included in the model, however, only the first rows of perimeter houses were considered. In general, these houses have the highest potential for providing shielding for the remainder of the

houses further in. The exact dimensions and locations of these future structures were not known, so approximate dimensions were used.

Receptors were placed in areas indicated as Single/Semi-Detached or Low Rise / Medium Density Housing as these areas are most likely to have private backyard spaces. However, unlike the Single/Semi-Detached lots, buildings were not included for the Low Rise / Medium Density areas due to their various potential configurations. This results in conservative noise estimates.

Digital topographical information representing existing elevation contours for the Developments was provided by Keltek for use in the noise model while the proposed elevation contours for AHD were provided by Alberta Transportation.

Traffic data for the Developments was taken from the report entitled, "Riverview Neighbourhoods 1, 2 &3 Neighbourhood Structure Plans Transportation Impact Assessment, prepared by Bunt & Associates (May 30, 2014)¹". Traffic data for AHD was obtained from the report entitled, "Environmental Noise Study for Southwest Anthony Henday Drive in Edmonton, AB, Prepared for AECOM, by aci Acoustical Consultants Inc., December 2013".

As part of the study, two noise modeling scenarios were conducted, including:

- 1) Future Case: This included the future conditions with the proposed Developments and future traffic volumes (representative of year 2047²) along 23 Avenue NW, 199 Street NW, 215 Street NW, Quadrant Avenue and Riverview Way in addition to the other internal collector roads. Traffic volumes for AHD were representative of year 2024³.
- 2) Future Case With Mitigation: This included all conditions associated with the Future Case along with the mitigation required to achieve the maximum noise levels of 65 dBA $L_{eq}24$, as specified in the UTNP C506A.

³ 10 year data for AHD was the only available data by Alberta Transportation.

_

¹ To be referenced in this report as TIA.

² Traffic data provided by Bunt & Associates in the report. The timeframe of 2047 exceeds the 20 year horizon as per UTNP C506A, resulting in a slightly more conservative estimate.

The computer noise modeling results were calculated in two ways. First, sound levels were calculated at specific receptor locations (i.e. typical residential outdoor amenity spaces). This was done at a height of 1.5 m (from the ground) and at an offset from the back property line of 5 m for all locations. The projected noise levels at the receptor locations provide a more representative indication of the typical noise levels experienced by residents in their private backyard spaces (i.e. not directly adjacent to the rear property line). In addition, the use of specific receptor locations allows for a better evaluation of the anticipated performance of any noise mitigation measures (i.e. the reduction in noise levels).

Secondly, color noise contours were calculated using a 5 m x 5 m grid over the entire study area at a height of 1.5 m. The color noise contours are used to determine if and where noise mitigation is required as they illustrate the projected noise levels within the entire residential private back yard spaces. They are then used once mitigation is in place in order to ensure that all areas within the residential private back yard spaces are below the applicable criteria.

Refer to Appendix I for a list of the noise modeling parameters.

3.2. Modeling Confidence

The algorithms used for the noise modeling follow the ISO 9613 standard. The published accuracy for this standard is ± 3 dBA between 100 m - 1,000 m. Accuracy levels beyond 1,000 m are not published. Experience based on similar noise models conducted over large distances shows that, as expected, as the distance increases, the associated accuracy in prediction decreases. Experience has shown that environmental factors such as wind, temperature inversions, topography and ground cover all have increasing effects over distances larger than approximately 1,500 m. As such, since all receptors are within approximately 1,500 m of the various noise sources, the prediction confidence is considered high.

July 24, 2014

4.0 Permissible Sound Levels

Environmental noise levels from roads are commonly described in terms of equivalent sound levels or L_{eq} . This is the level of a steady sound having the same acoustic energy, over a given time period, as the fluctuating sound. In addition, this energy averaged level is A-weighted to account for the reduced sensitivity of average human hearing to low frequency sounds. These L_{eq} in dBA, which are the most common environmental noise measure, are often given for day-time (07:00 to 22:00) L_{eq} Day and night-time (22:00 to 07:00) L_{eq} Night while other criteria use the entire 24-hour period as L_{eq} 24. Refer to Appendix II for a description of the acoustical terminology and Appendix III for a list of common noise sources.

The criteria used to evaluate the road noise in the study area include the City of Edmonton Urban Traffic Noise Policy (UTNP), C506A. The UTNP is applicable to residential land use adjacent to major transportation facilities such as arterial roadways, light rail transit and future high speed transit facilities. The UTNP accounts for "background" transportation noise only and does not deal with non-typical events such as loud mufflers, stereos, etc. These are dealt with under the City of Edmonton Community Standards Bylaw C14600. The following is taken directly from the UTNP:

- 1) A 20-year¹ time horizon for traffic volume projections (AAWDT volumes) is used to predict future noise levels adjacent to new developments and new or upgraded transportation facilities.
- 2) The City of Edmonton will seek to ensure that no new residential development less than three storeys will be allowed adjacent to transportation facilities (arterial roadways, light rail transit) unless the developer proves to the satisfaction of the City that the projected noise level in the private back yards of residences abutting the transportation facility will not exceed 65 dBA Leq24. Construction of any noise attenuation measures necessary to achieve this threshold will be funded and undertaken by the developer of the adjacent property, unless specific site characteristics, such as topography or existing land uses, necessitate the consideration of relief from the requirement. Under these circumstances, the attenuated noise level in the abutting private back yards should be the lowest level technically and economically practicable.

In summary, the UTNP requires a maximum sound level of 65 dBA $L_{eq}24$ in the private back yards of residences abutting transportation facilities. As such, the **permissible sound level (PSL) for the area is** 65 dBA $L_{eq}24$.

¹ 33 year data was used for traffic volumes within the Developments which resulted in conservative estimates. Again, 10 year data for AHD was the only available data by Alberta Transportation.

_

5.0 Results and Discussion

5.1. Future Case

The results of the Future Case noise modeling at the various private residential backyard spaces within the Developments are shown in Tables 1a - 1e and illustrated in <u>Figures 2a - 2g</u>. As mentioned previously, the noise mitigation requirements were based on the color noise contours provided in <u>Figures 2a - 2g</u> and not on the values found within the tables. Therefore, noise mitigation could still potentially be recommended for areas in which the $L_{eq}24$ values found within the tables are below 65 dBA $L_{eq}24$.

5.1.1. Neighbourhood 1 Residential Development

The results of the Future Case modeling for NBHD 1 indicate noise levels ranging from 61.7 - 70.8 dBA $L_{eq}24$, as indicated in Table 1a. As a results noise mitigation will be required for certain residents within NBHD 1 to reduce the noise levels to below the requirements of the City of Edmonton UTNP C506A.

Table 1a. Future Case Noise Modeling Results (Neighbourhood 1)

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)	
N1-001	69.1	70.7	63.4		N1-033	67.0	68.5	61.2	
N1-002	70.6	72.2	64.8		N1-034	65.5	67.1	59.8	
N1-003	70.7	72.3	64.9		N1-035	66.2	67.8	60.5	
N1-004	70.8	72.4	65.1		N1-036	65.5	67.1	59.8	
N1-005	70.8	72.4	65.0		N1-037	66.4	68.0	60.7	
N1-006	64.8	66.4	58.8		N1-038	66.1	67.7	60.4	
N1-007	62.5	64.1	56.4		N1-039	66.8	68.4	61.0	
N1-008	62.8	64.5	56.7	1	N1-040	66.2	67.8	60.5	
N1-009	63.2	64.8	57.1		N1-041	66.6	68.2	60.9	
N1-010	63.7	65.3	57.6		N1-042	66.3	67.9	60.6	
N1-011	63.8	65.5	57.7		N1-043	67.1	68.7	61.3	
N1-012	64.0	65.6	57.9		N1-044	66.8	68.4	61.1	
N1-013	63.9	65.6	57.8		N1-045	67.2	68.8	61.5	
N1-014	64.0	65.6	57.8	1	N1-046	67.4	69.0	61.7	
N1-015	63.8	65.4	57.7	1	N1-047	67.4	69.0	61.7	
N1-016	63.9	65.6	57.8	1	N1-048	66.6	68.2	60.9	
N1-017	63.9	65.5	57.8		N1-049	66.7	68.3	61.0	
N1-018	63.6	65.2	57.4		N1-050	66.6	68.2	60.8	
N1-019	62.3	64.0	56.2		N1-051	66.8	68.3	61.0	
N1-020	61.7	63.3	55.6		N1-052	66.5	68.1	60.8	
N1-021	61.9	63.5	55.8		N1-053	66.8	68.4	61.1	
N1-022	62.4	64.0	56.3		N1-054	66.7	68.3	61.0	
N1-023	65.7	67.3	59.7		N1-055	67.9	69.5	61.8	
N1-024	65.9	67.5	60.2		N1-056	68.0	69.7	61.9	
N1-025	65.5	67.0	59.7		N1-057	67.9	69.5	61.8	
N1-026	66.2	67.8	60.4		N1-058	68.1	69.7	62.0	
N1-027	65.2	66.8	59.5		N1-059	68.1	69.7	62.0	
N1-028	65.9	67.5	60.1		N1-060	68.4	70.0	62.3	
N1-029	65.2	66.8	59.5		N1-061	69.2	70.8	63.1	
N1-030	66.8	68.4	61.1		N1-062	68.5	70.2	62.4	
N1-031	65.3	66.9	59.6		N1-063	68.8	70.4	62.7	
N1-032	65.9	67.5	60.1						

5.1.1.1. 215 Street NW, north of 23 Avenue NW (N1-001 to N1-005)

The noise levels are relatively consistent for all residents backing directly onto 215 Street NW range from 69.1 - 70.8 dBA. The noise levels for these receptors are the highest for NBHD 1 which was anticipated due to the traffic volumes along this road and due to expanding it to a six-lane divided arterial truck route in the future. Based on the results of the noise model, noise mitigation will be required for *all* receptors within this area.

5.1.1.2. 23 Avenue NW, between 215 Street NW and 199 Street NW (N1-006 to N1-023)

The noise levels for receptor locations backing onto 23 Avenue NW between 215 Street NW and 199 Street NW vary more significantly than other areas within NBHD 1 and range from 61.7 - 65.7 dBA. The variance in noise levels can be attributed to the distance between the residential back yards and 23 Avenue NW in addition to variances in traffic volumes along 23 Avenue NW. Based on the results of the noise model, noise mitigation will be required for *certain* receptors within this area.

5.1.1.3. <u>199 Street NW, north of 23 Avenue NW (N1-024 to N1-054)</u>

The noise levels for receptor locations adjacent to 199 Street north of 23 Avenue NW are relatively consistent and range from 65.2 - 67.4 dBA. Based on the results of the noise model, noise mitigation will be required for *all* receptors within this area.

5.1.1.4. 23 Avenue NW, between 199 Street NW and AHD (N1-055 to N1-063)

The noise levels for receptor locations backing onto 23 Avenue NW between 199 Street NW and AHD are relatively consistent and range from 67.9 – 69.2 dBA. Based on the results of the noise model, noise mitigation will be required for *all* receptors within this area.

5.1.2. Neighbourhood 2 Residential Development

The results of the Future Case modeling for NBHD 2 indicate noise levels ranging from 57.6 - 67.8 dBA $L_{eq}24$, as indicated in Tables 1b & 1c. As a results noise mitigation will be required for certain residents within NBHD 2 to reduce the noise levels to below the requirements of the City of Edmonton UTNP C506A.

Table 1b. Future Case Noise Modeling Results (Neighbourhood 2)

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N2-001	59.8	61.4	53.7		N2-030	65.3	66.8	59.5
N2-002	59.5	61.2	53.4		N2-031	65.2	66.8	59.5
N2-003	59.1	60.7	53.0		N2-032	65.3	66.8	59.5
N2-004	64.3	65.9	58.2		N2-033	64.8	66.4	59.1
N2-005	64.2	65.8	58.1		N2-034	64.9	66.5	59.2
N2-006	64.3	65.9	58.1		N2-035	65.1	66.7	59.4
N2-007	64.4	66.0	58.3		N2-036	65.1	66.7	59.3
N2-008	64.3	66.0	58.2		N2-037	65.2	66.8	59.5
N2-009	64.6	66.2	58.5		N2-038	65.1	66.7	59.4
N2-010	67.0	68.6	61.0		N2-039	65.2	66.8	59.4
N2-011	65.1	66.7	59.3		N2-040	65.0	66.6	59.3
N2-012	64.8	66.4	59.1	M	N2-041	65.1	66.7	59.4
N2-013	64.7	66.3	59.0		N2-042	65.0	66.6	59.3
N2-014	64.9	66.5	59.2		N2-043	65.1	66.7	59.3
N2-015	64.8	66.4	59.1		N2-044	66.0	67.6	60.3
N2-016	64.9	66.5	59.2		N2-045	65.3	66.8	59.5
N2-017	65.5	67.1	59.8		N2-046	63.9	65.4	58.1
N2-018	66.2	67.8	60.4		N2-047	64.0	65.6	58.3
N2-019	66.0	67.6	60.3		N2-048	64.0	65.6	58.2
N2-020	65.8	67.4	60.0		N2-049	64.1	65.7	58.3
N2-021	65.6	67.1	59.8		N2-050	64.0	65.6	58.3
N2-022	65.7	67.3	60.0		N2-051	64.0	65.6	58.3
N2-023	65.6	67.2	59.8		N2-052	63.9	65.5	58.2
N2-024	65.3	66.9	59.6		N2-053	64.1	65.7	58.4
N2-025	65.4	67.0	59.7		N2-054	64.2	65.7	58.4
N2-026	65.6	67.2	59.8		N2-055	64.2	65.8	58.4
N2-027	66.2	67.8	60.4		N2-056	66.4	68.0	60.7
N2-028	65.9	67.5	60.2		N2-057	66.6	68.2	60.9
N2-029	65.4	67.0	59.7		N2-058	66.8	68.4	61.0

Table 1c. Future Case Noise Modeling Results (Neighbourhood 2 cont.)

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N2-059	67.0	68.6	61.2		N2-088	60.1	61.6	54.3
N2-060	66.3	67.9	60.6		N2-089	60.7	62.3	55.0
N2-061	66.4	68.0	60.7		N2-090	60.5	62.1	54.8
N2-062	67.5	69.1	61.8		N2-091	60.3	61.9	54.5
N2-063	67.8	69.4	62.1		N2-092	60.5	62.0	54.7
N2-064	66.6	68.1	60.8		N2-093	60.5	62.1	54.8
N2-065	66.7	68.3	61.0		N2-094	60.7	62.3	55.0
N2-066	66.5	68.1	60.8		N2-095	60.1	61.6	54.3
N2-067	66.7	68.2	60.9		N2-096	60.8	62.3	55.0
N2-068	66.6	68.2	60.9		N2-097	58.5	60.1	52.7
N2-069	66.3	67.8	60.5		N2-098	60.7	62.3	55.0
N2-070	66.2	67.8	60.5		N2-099	57.8	59.3	52.0
N2-071	66.3	67.9	60.6		N2-100	61.2	62.8	55.5
N2-072	66.7	68.2	60.9		N2-101	57.6	59.2	51.9
N2-073	66.9	68.5	61.2		N2-102	61.4	63.0	55.7
N2-074	66.7	68.2	60.9		N2-103	58.0	59.5	52.2
N2-075	66.7	68.3	60.9		N2-104	61.5	63.1	55.7
N2-076	66.2	67.7	60.4		N2-105	63.2	64.8	57.5
N2-077	65.7	67.3	59.9		N2-106	63.9	65.5	58.2
N2-078	65.1	66.7	59.4	M	N2-107	63.6	65.2	57.8
N2-079	65.5	67.0	59.7		N2-108	63.0	64.6	57.3
N2-080	65.3	66.9	59.6		N2-109	58.8	60.4	53.0
N2-081	65.1	66.7	59.3		N2-110	61.9	63.5	56.2
N2-082	65.1	66.7	59.4		N2-111	58.5	60.0	52.7
N2-083	65.2	66.7	59.4		N2-112	60.6	62.2	54.9
N2-084	61.9	63.5	56.1		N2-113	58.5	60.1	52.8
N2-085	60.4	62.0	54.7		N2-114	60.4	62.0	54.7
N2-086	60.0	61.6	54.3		N2-115	59.6	61.2	53.9
N2-087	59.9	61.5	54.2		N2-116	61.6	63.2	55.9

5.1.2.1. 23 Avenue NW, between 215 Street NW and 199 Street NW (N2-001 to N2-010)

The noise levels for receptor locations backing onto 23 Avenue NW between 215 Street NW and 199 Street NW vary more significantly than other areas within NBHD 2 and range from 59.1 - 67.0 dBA. The variance in noise levels can be attributed to the distance between the residential back yards and 23 Avenue NW in addition to variances in traffic volumes along 23 Avenue NW. Based on the results of the noise model, noise mitigation will be required for *certain* residential receptors within this area.

5.1.2.2. <u>199 Street NW</u>, south of 23 Avenue NW (N2-011 to N2-055)

The noise levels for receptor locations backing onto 199 Street south of 23 Avenue NW and terminating at 215 Street NW, are relatively consistent and range from 63.9 - 66.2 dBA. Based on the results of the noise model, noise mitigation will be required for *all* residential receptors within this area.

5.1.2.3. 215 Street NW, north of Quadrant Avenue (N2-056 to N2-083)

The noise levels are relatively consistent for all residents backing directly onto 215 Street NW and range from 65.1 – 67.8 dBA. The noise levels for these receptors are the highest for NBHD 2 which was anticipated due to the traffic volumes along this road and due to expanding it to a six-lane divided arterial truck route in the future. Based on the results of the noise model, noise mitigation will be required for *all* residential within this area.

5.1.2.4. Riverview Way, between 215 Street NW and 199 Street NW (N2-084 to N2-116)

The noise levels for receptor locations backing onto Riverview Way between 215 Street NW and 199 Street NW vary significantly and range from 57.6 – 63.9 dBA. The variance in noise levels can be primarily attributed to the varying distances between the residential back yards and Riverview Way. Based on the results of the noise model, noise mitigation will *not be required* for the residential receptor locations within this area.

5.1.3. Neighbourhood 3 Residential Development

The results of the Future Case modeling for NBHD 3 indicate noise levels ranging from 54.6 - 69.8 dBA $L_{eq}24$, as indicated in Tables 1d & 1e. As a results noise mitigation will be required for certain residents within NBHD 3 to reduce the noise levels to below the requirements of the City of Edmonton UTNP C506A.

Table 1d. Future Case Noise Modeling Results (Neighbourhood 3)

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		
N3-001	66.5	68.1	60.7		N3-034	64.6	66.2	58.6		
N3-002	68.1	69.7	62.1		N3-035	64.9	66.5	58.9		
N3-003	68.9	70.6	62.8		N3-036	60.1	61.7	54.4		
N3-004	68.5	70.1	62.4		N3-037	58.2	59.8	52.8		
N3-005	68.5	70.1	62.4		N3-038	57.1	58.6	51.9		
N3-006	68.5	70.1	62.3		N3-039	56.5	58.0	51.5		
N3-007	68.5	70.1	62.4		N3-040	56.2	57.6	51.2		
N3-008	68.6	70.2	62.4		N3-041	55.9	57.4	51.1		
N3-009	69.0	70.6	62.8		N3-042	55.8	57.3	51.1		
N3-010	68.3	70.0	62.2		N3-043	55.7	57.1	51.1		
N3-011	68.9	70.5	62.8		N3-044	55.6	57.0	51.0		
N3-012	68.8	70.5	62.7		N3-045	55.6	57.1	51.1		
N3-013	68.9	70.5	62.8		N3-046	55.7	57.2	51.2		
N3-014	68.7	70.3	62.6		N3-047	55.9	57.3	51.4		
N3-015	69.3	70.9	63.2	K	N3-048	56.2	57.6	51.7		
N3-016	69.3	70.9	63.2		N3-049	56.6	58.0	52.2		
N3-017	69.1	70.7	63.0		N3-050	57.7	59.1	53.3		
N3-018	68.7	70.4	62.6		N3-051	58.5	59.9	54.1		
N3-019	69.0	70.6	62.9		N3-052	57.3	58.7	52.9		
N3-020	68.9	70.5	62.7		N3-053	55.3	56.7	50.9		
N3-021	68.9	70.5	62.8		N3-054	54.6	56.0	50.2		
N3-022	68.0	69.6	62.0		N3-055	64.9	66.5	59.1		
N3-023	69.8	71.4	63.7		N3-056	64.1	65.7	58.3		
N3-024	69.7	71.3	63.6		N3-057	63.9	65.5	58.1		
N3-025	69.5	71.1	63.4		N3-058	64.0	65.5	58.2		
N3-026	69.0	70.7	62.9		N3-059	63.3	64.9	57.6		
N3-027	68.5	70.2	62.4		N3-060	63.8	65.4	58.0		
N3-028	69.2	70.8	63.1		N3-061	63.5	65.1	57.7		
N3-029	69.3	70.9	63.2		N3-062	64.1	65.6	58.3		
N3-030	69.4	71.0	63.3		N3-063	64.9	66.5	59.2		
N3-031	69.6	71.3	63.5		N3-064	63.9	65.5	58.2		
N3-032	63.1	64.7	57.1		N3-065	63.7	65.3	57.9		
N3-033	63.9	65.5	57.8		N3-066	63.3	64.9	57.5		

Table 1e. Future Case Noise Modeling Results (Neighbourhood 3 cont.)

Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)	Receptor	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N3-067	63.5	65.0	57.7	N3-099	63.0	64.6	57.2
N3-068	63.0	64.6	57.3	N3-100	62.8	64.4	57.1
N3-069	63.5	65.1	57.8	N3-101	63.1	64.7	57.3
N3-070	63.1	64.7	57.4	N3-102	63.1	64.7	57.4
N3-071	63.4	65.0	57.7	N3-103	62.8	64.4	57.0
N3-072	63.1	64.7	57.3	N3-104	63.1	64.7	57.4
N3-073	63.5	65.1	57.7	N3-105	62.9	64.5	57.2
N3-074	63.0	64.6	57.3	N3-106	62.8	64.4	57.1
N3-075	63.5	65.0	57.7	N3-107	63.1	64.6	57.3
N3-076	63.1	64.7	57.4	N3-108	62.9	64.5	57.2
N3-077	64.6	66.2	58.9	N3-109	63.2	64.8	57.5
N3-078	64.5	66.1	58.8	N3-110	63.2	64.8	57.5
N3-079	64.7	66.3	59.0	N3-111	65.2	66.8	59.4
N3-080	64.3	65.8	58.5	N3-112	59.5	61.1	53.8
N3-081	63.5	65.1	57.8	N3-113	59.4	61.0	53.7
N3-082	63.3	64.9	57.6	N3-114	61.1	62.7	55.4
N3-083	63.3	64.8	57.5	N3-115	61.3	62.8	55.5
N3-084	63.2	64.8	57.5	N3-116	61.5	63.1	55.8
N3-085	63.0	64.5	57.2	N3-117	62.4	64.0	56.6
N3-086	63.2	64.8	57.4	N3-118	66.1	67.7	60.4
N3-087	63.6	65.2	57.8	N3-119	65.3	66.9	59.5
N3-088	63.2	64.8	57.5	N3-120	65.2	66.8	59.5
N3-089	63.4	64.9	57.6	N3-121	65.4	67.0	59.6
N3-090	63.1	64.7	57.3	N3-122	65.2	66.8	59.5
N3-091	64.9	66.4	59.1	N3-123	65.1	66.6	59.3
N3-092	63.3	64.9	57.6	N3-124	64.9	66.5	59.2
N3-093	62.8	64.4	57.0	N3-125	65.3	66.8	59.5
N3-094	62.5	64.1	56.8	N3-126	65.0	66.5	59.2
N3-095	63.2	64.8	57.4	N3-127	64.9	66.5	59.2
N3-096	63.1	64.7	57.4	N3-128	65.4	66.9	59.6
N3-097	63.2	64.7	57.4	N3-129	65.1	66.7	59.4
N3-098	63.0	64.6	57.3	N3-130	66.1	67.7	60.3

July 24, 2014

5.1.3.1. 23 Avenue NW, between 199 Street NW and AHD (N3-001 to N3-035)

The noise levels for receptor locations backing onto 23 Avenue NW between 199 Street NW and AHD range from 63.1 – 69.8 dBA. The variance in noise levels can be attributed to the distance between the residential back yards and 23 Avenue NW in addition to variances in traffic volumes along 23 Avenue NW. Based on the results of the noise model, noise mitigation will be required for *certain* residential receptors within this area.

5.1.3.2. Anthony Henday Drive, (N3-036 to N3-054)

The noise levels for receptor locations backing onto Anthony Henday Drive vary from 54.6 - 60.1 dBA. Based on the results of the noise model, noise mitigation will *not be required* for the residential receptor locations within this area.

5.1.3.3. Riverview Way, between 23 Avenue NW and 199 Street NW (N3-055 to N3-117)

The noise levels for receptor locations backing onto Riverview Way between 23 Avenue NW and 199 Street NW vary significantly and range from 57.5 – 65.2 dBA. The variance in noise levels can be primarily attributed to the distance between the residential back yards and Riverview Way. Based on the results of the noise model, noise mitigation will be required *for a majority* of residential receptors within this area.

5.1.3.4. 199 Street NW, north of 23 Avenue NW (N3-118 to N3-130)

The noise levels for receptor locations backing onto 199 Street between 23 Avenue NW and Riverview Way, are relatively consistent and range from 64.9 - 66.1 dBA. Based on the results of the noise model, noise mitigation will be required for *all* residential receptors within this area.

5.2. Future Case With Mitigation

The results of the Future Case noise modeling *with* mitigation at the various private residential backyard spaces within the Developments are shown in Table 2a - 2e, and illustrated in Figures 3a - 3g.

5.2.1. Neighbourhood 1 Residential Development

The results of the Future Case modeling *with* mitigation for NBHD 1 indicate noise levels ranging from 59.7 - 63.3 dBA $L_{eq}24$ as presented in Table 2a. Since all residential receptor $L_{eq}24$ noise levels are below 65 dBA, no further mitigation will be required to meet the requirements of the City of Edmonton UTNP C506A.

Table 2a. Future Case With Mitigation Noise Modeling Results (Neighbourhood 1)

		- 144							
Receptor	L _{eq} 24 (dBA)	Difference Relative to Future Case Leq24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)	Receptor	Difference Relative to Future Case Leq24 (dBA)	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N1-001	59.8	-9.3	61.4	54.0	N1-033	62.3	-4.7	63.9	56.6
N1-002	60.2	-10.4	61.8	54.4	N1-034	61.8	-3.7	63.3	56.0
N1-003	60.8	-9.9	62.4	55.1	N1-035	62.2	-4.0	63.8	56.5
N1-004	60.8	-10.0	62.4	55.0	N1-036	61.7	-3.8	63.2	55.9
N1-005	61.4	-9.4	63.0	55.5	N1-037	62.8	-3.6	64.4	57.0
N1-006	62.3	-2.5	63.9	56.3	N1-038	62.5	-3.6	64.1	56.8
N1-007	62.5	0.0	64.1	56.4	N1-039	63.1	-3.7	64.7	57.4
N1-008	62.8	0.0	64.5	56.7	N1-040	62.9	-3.3	64.5	57.2
N1-009	63.2	0.0	64.8	57.1	N1-041	63.1	-3.5	64.6	57.3
N1-010	59.9	-3.8	61.5	53.9	N1-042	63.0	-3.3	64.5	57.2
N1-011	60.3	-3.5	61.9	54.2	N1-043	62.9	-4.2	64.5	57.2
N1-012	60.4	-3.6	62.1	54.3	N1-044	63.1	-3.7	64.7	57.3
N1-013	60.4	-3.5	62.0	54.3	N1-045	63.0	-4.2	64.5	57.2
N1-014	60.4	-3.6	62.0	54.3	N1-046	62.9	-4.5	64.5	57.1
N1-015	60.4	-3.4	62.0	54.2	N1-047	62.8	-4.6	64.4	57.1
N1-016	60.4	-3.5	62.0	54.3	N1-048	63.0	-3.6	64.6	57.2
N1-017	60.4	-3.5	62.1	54.3	N1-049	63.0	-3.7	64.5	57.2
N1-018	60.3	-3.3	61.9	54.2	N1-050	63.2	-3.4	64.8	57.4
N1-019	59.7	-2.6	61.4	53.6	N1-051	63.2	-3.6	64.8	57.5
N1-020	59.7	-2.0	61.4	53.6	N1-052	63.2	-3.3	64.8	57.4
N1-021	60.3	-1.6	61.9	54.2	N1-053	63.3	-3.5	64.8	57.5
N1-022	62.3	-0.1	63.9	56.2	N1-054	63.3	-3.4	64.9	57.5
N1-023	62.4	-3.3	64.1	56.4	N1-055	60.1	-7.8	61.8	54.0
N1-024	62.7	-3.2	64.3	57.0	N1-056	60.6	-7.4	62.2	54.4
N1-025	62.6	-2.9	64.1	56.9	N1-057	60.6	-7.3	62.2	54.5
N1-026	62.8	-3.4	64.3	57.0	N1-058	60.6	-7.5	62.2	54.5
N1-027	61.5	-3.7	63.1	55.8	N1-059	60.7	-7.4	62.3	54.5
N1-028	61.9	-4.0	63.5	56.2	N1-060	60.9	-7.5	62.5	54.8
N1-029	61.9	-3.3	63.4	56.1	N1-061	61.4	-7.8	63.0	55.3
N1-030	62.5	-4.3	64.1	56.8	N1-062	61.6	-6.9	63.2	55.5
N1-031	61.9	-3.4	63.5	56.2	N1-063	60.9	-7.9	62.5	54.8
N1-032	62.2	-3.7	63.7	56.4					

5.2.1.1. 215 Street NW, north of 23 Avenue NW (N1-001 to N1-005)

All $L_{eq}24$ noise levels for residential receptors backing on 215 Street are projected to be below 65 dBA and range from 59.8 - 62.3 dBA. The relative difference in noise levels from the Future case *with* and *without* mitigation ranges from -9.4 to -10.4 dBA which is a significant decrease in noise level.

5.2.1.2. 23 Avenue NW, between 215 Street NW and 199 Street NW (N1-006 to N1-023)

The noise levels for receptor locations backing onto 23 Avenue NW between 215 Street NW and 199 Street NW are projected to be below 65 dBA and range from 59.7 – 63.2 dBA. The relative difference in noise levels from the Future case *with* and *without* mitigation ranges from 0.0 to -3.8 dBA.

5.2.1.3. 199 Street NW, north of 23 Avenue NW (N1-024 to N1-054)

The noise levels for receptor locations backing onto 199 Street NW between north of 23 Avenue NW are projected to be below 65 dBA and range from 61.5 - 63.3 dBA. The relative difference in noise levels from the Future case *with* and *without* mitigation ranges from -2.9 to -4.7 dBA.

5.2.1.4. 23 Avenue NW, between 199 Street NW and AHD (N1-055 to N1-063)

The noise levels for receptor locations backing onto 23 Avenue NW between 199 Street NW and AHD are projected to be below 65 dBA and range from 60.1 – 61.6 dBA. The relative difference in noise levels from the Future case *with* and *without* mitigation ranges from -6.9 to -7.9 dBA.

5.2.2. Neighbourhood 2 Residential Development

The results of the Future Case modeling *with* mitigation for NBHD 2 indicate noise levels ranging from 56.3 - 63.9 dBA $L_{eq}24$ as presented in Table 2b & Table 2c. Since all residential receptor $L_{eq}24$ noise levels are below 65 dBA, no further mitigation will be required to meet the requirements of the City of Edmonton UTNP C506A.

Table 2b. Future Case With Mitigation Noise Modeling Results (Neighbourhood 2)

Receptor	L _{eq} 24 (dBA)	Difference Relative to Future Case Leq24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)	Receptor	Difference Relative to Future Case Leq24 (dBA)	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N2-001	59.8	0.0	61.4	53.7	N2-030	61.5	-3.8	63.0	55.7
N2-002	59.5	0.0	61.1	53.4	N2-031	61.0	-4.2	62.5	55.2
N2-003	58.8	-0.3	60.4	52.7	N2-032	61.0	-4.3	62.6	55.3
N2-004	60.6	-3.7	62.2	54.5	N2-033	60.6	-4.2	62.2	54.9
N2-005	60.6	-3.6	62.3	54.5	N2-034	60.9	-4.0	62.4	55.1
N2-006	60.7	-3.6	62.3	54.6	N2-035	60.9	-4.2	62.4	55.1
N2-007	60.7	-3.7	62.3	54.6	N2-036	61.1	-4.0	62.7	55.3
N2-008	60.4	-3.9	62.1	54.3	N2-037	61.1	-4.1	62.7	55.4
N2-009	61.2	-3.4	62.8	55.1	N2-038	61.1	-4.0	62.7	55.4
N2-010	62.7	-4.3	64.3	56.7	N2-039	61.1	-4.1	62.7	55.4
N2-011	61.0	-4.1	62.6	55.3	N2-040	61.2	-3.8	62.8	55.4
N2-012	60.9	-3.9	62.4	55.1	N2-041	61.0	-4.1	62.6	55.3
N2-013	60.9	-3.8	62.4	55.1	N2-042	61.2	-3.8	62.8	55.4
N2-014	61.1	-3.8	62.7	55.3	N2-043	61.1	-4.0	62.7	55.4
N2-015	60.7	-4.1	62.2	54.9	N2-044	61.7	-4.3	63.3	56.0
N2-016	61.2	-3.7	62.8	55.5	N2-045	60.8	-4.5	62.4	55.1
N2-017	62.0	-3.5	63.6	56.3	N2-046	60.1	-3.8	61.7	54.4
N2-018	62.7	-3.5	64.3	56.9	N2-047	60.2	-3.8	61.8	54.5
N2-019	61.9	-4.1	63.5	56.2	N2-048	60.0	-4.0	61.6	54.3
N2-020	61.7	-4.1	63.3	56.0	N2-049	60.2	-3.9	61.8	54.4
N2-021	61.6	-4.0	63.2	55.8	N2-050	60.1	-3.9	61.7	54.3
N2-022	61.7	-4.0	63.3	56.0	N2-051	60.1	-3.9	61.7	54.3
N2-023	61.7	-3.9	63.3	56.0	N2-052	59.9	-4.0	61.4	54.1
N2-024	61.4	-3.9	62.9	55.6	N2-053	60.2	-3.9	61.8	54.4
N2-025	61.5	-3.9	63.0	55.7	N2-054	60.3	-3.9	61.9	54.6
N2-026	61.7	-3.9	63.3	56.0	N2-055	60.4	-3.8	62.0	54.7
N2-027	61.7	-4.5	63.3	56.0	N2-056	57.1	-9.3	58.7	51.3
N2-028	61.6	-4.3	63.2	55.9	N2-057	58.3	-8.3	59.9	52.5
N2-029	61.4	-4.0	63.0	55.6	N2-058	58.1	-8.7	59.7	52.4

Table 2c. Future Case With Mitigation Noise Modeling Results (Neighbourhood 2 cont.)

Receptor	L _{eq} 24 (dBA)	Difference Relative to Future Case Leq24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)		Receptor	Difference Relative to Future Case Leq24 (dBA)	L _{eq} 24 (dBA)	L _{eq} Day (dBA)	L _{eq} Night (dBA)
N2-059	58.3	-8.7	59.9	52.6		N2-088	60.1	0.0	61.6	54.3
N2-060	57.8	-8.5	59.4	52.0		N2-089	60.7	0.0	62.3	55.0
N2-061	57.8	-8.6	59.4	52.0		N2-090	60.5	0.0	62.1	54.8
N2-062	57.0	-10.5	58.6	51.3		N2-091	60.3	0.0	61.9	54.5
N2-063	57.1	-10.7	58.7	51.4		N2-092	60.5	0.0	62.0	54.7
N2-064	57.8	-8.8	59.4	52.1		N2-093	60.5	0.0	62.1	54.8
N2-065	57.7	-9.0	59.3	51.9		N2-094	60.7	0.0	62.3	55.0
N2-066	57.7	-8.8	59.3	52.0		N2-095	60.1	0.0	61.6	54.3
N2-067	57.7	-9.0	59.2	51.9		N2-096	60.7	-0.1	62.3	55.0
N2-068	57.8	-8.8	59.4	52.0		N2-097	58.5	0.0	60.1	52.7
N2-069	57.4	-8.9	59.0	51.6		N2-098	60.7	0.0	62.3	55.0
N2-070	57.9	-8.3	59.4	52.1		N2-099	57.7	-0.1	59.3	52.0
N2-071	57.1	-9.2	58.7	51.4		N2-100	61.2	0.0	62.8	55.5
N2-072	57.2	-9.5	58.8	51.4		N2-101	57.6	0.0	59.2	51.9
N2-073	58.1	-8.8	59.7	52.4		N2-102	61.4	0.0	63.0	55.7
N2-074	58.2	-8.5	59.8	52.4		N2-103	57.9	-0.1	59.5	52.2
N2-075	58.0	-8.7	59.6	52.3		N2-104	61.5	0.0	63.0	55.7
N2-076	56.6	-9.6	58.2	50.9		N2-105	63.2	0.0	64.8	57.5
N2-077	58.7	-7.0	60.3	53.0		N2-106	63.9	0.0	65.5	58.2
N2-078	58.2	-6.9	59.8	52.4		N2-107	63.6	0.0	65.2	57.8
N2-079	58.3	-7.2	59.9	52.5	V	N2-108	63.0	0.0	64.6	57.3
N2-080	58.5	-6.8	60.1	52.8		N2-109	58.8	0.0	60.3	53.0
N2-081	58.3	-6.8	59.9	52.5		N2-110	61.9	0.0	63.5	56.2
N2-082	58.1	-7.0	59.7	52.4		N2-111	58.4	-0.1	60.0	52.7
N2-083	56.3	-8.9	57.9	50.6		N2-112	60.6	0.0	62.2	54.8
N2-084	61.2	-0.7	62.8	55.5		N2-113	58.4	-0.1	60.0	52.7
N2-085	60.4	0.0	61.9	54.6		N2-114	60.4	0.0	61.9	54.6
N2-086	60.0	0.0	61.6	54.3		N2-115	59.4	-0.2	61.0	53.6
N2-087	59.9	0.0	61.5	54.1		N2-116	61.4	-0.2	63.0	55.6

5.2.2.1. 23 Avenue NW, between 215 Street NW and 199 Street NW (N2-001 to N2-010)

The noise levels for receptor locations backing onto 23 Avenue NW between 215 Street NW and 199 Street NW are projected to be below 65 dBA and range from 58.8 - 62.7 dBA. The relative difference in noise levels from the Future case *with* and *without* mitigation ranges from 0.0 to -4.3 dBA.

